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0 Introduction
Consider the sphere and the torus. One way to tell them apart is to consider how closed
lines, also called loops, intersect on the respective surfaces. As is pirctured below in
Figure 0.1, the two lines on the torus intersect only once, and no matter how you slide
or distort either of these lines, they will always intersect at least once. This does not hold
true for the sphere, and so we can be certain that these two objects are indeed different.
Note that it is possible to choose two closed lines on the torus that do not intersect each
other, but only if they go around the same way. On the sphere it is impossible to find
two lines that always intersect, even after continuous sliding.

+1

Figure 0.1: Lines
intersecting on a torus

−1

+1

Figure 0.2: Lines
intersecting on a sphere

The torus and the sphere are examples of closed, oriented 2-dimensional manifolds,
and the lines that intersect on these manifolds are examples of 1-dimensional subman-
ifolds. We can make counting intersections more useful by assigning an integer to each
intersection based on the orientation of the lines, and of the underlying surface, as-
suming that we can orient the surface. We call the sum of these intersections the
intersection number. Then, by Figure 0.1 and 0.2, we can see that the intersection
number of the given lines on the torus is one, and on the sphere it is zero.

If we review how we moved the lines on the sphere before, we notice that after sliding
the lines continuously, i.e. without breaking the line, the intersection number does not
change. Similarly, we can see from Figure 0.3 that deforming the lines on the torus has
no effect on the intersection number. This property is called homotopy invariance,
and essential for our study of manifolds.

+1
−1

+1

Figure 0.3: Deforming the red Line

The goal of this paper is to categorize 4-dimensional manifolds by examining how
2-dimensional submanifolds intersect on them. This is, in many ways, analogous to the
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0 INTRODUCTION

above 2-dimensional case. However, one must be careful not to rely too much on one’s
intuition of 2 dimensions when examining 4 dimensions, since it can lead to false results.
The tool that will emerge from this study, the intersection form, is of algebraic nature.

The reason to consider 4-dimensional manifolds is that they are special compared to
manifolds in other dimensions. In dimensions 1, 2 and 3, the "low" dimensions, any
two smooth manifolds that are homeomorphic are also diffeomorphic. For dimensions
5 and higher there are at most finitely many smooth structures on a given manifold.
In dimension 4 there are manifolds that admit infinitely many smooth structures, for
example, the so called exotic R4’s which are spaces that are homeomorphic, but not dif-
feomorphic, to R4. Even worse, there are actually uncountably many such spaces (up to
diffeomorphism). Such exotic spaces can be constructed via Handle Decompositions
or h-cobordisms, which we will not consider in this thesis. A gentle introduction to
these concepts can be found in Alexandru Scorpan’s The Wild World of 4-Manifolds
[7].

Our goal will be to prove Whitehead’s Theorem on Intersection Forms, i.e.
that simply-connected, smooth, oriented 4-manifolds are determined uniquely up to
homotopy equivalence by their intersection form. Indeed, a stronger result has been
proven by Freedman: such manifolds are also uniquely determined up to homeomorphism
by their intersection form. However, a proof of that theorem is beyond the scope of this
thesis. Along the way we will stumble upon other interesting results.

To prove these wonderful statments, we will have to first review some Differential
Topology. Specifically, we will prove that every element of the second homology of any
4-manifold can be represented by an embedded surface. After, we will look at some
general properties of symmetric bilinear forms.

I would like to thank Will Merry for his excellent lectures and helping me understand
this extraordinary topic. I also want to thank Bernd Ladwig and Dominique Heyn for
proofreading my thesis.
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1 Surface Representation

1.1 Poincaré Duality

To start we will review a central result in both Differential Geometry and Algebraic
Topology, which we will frequently need in its different forms, is Poincaré Duality. I will
state this result using the language of Differential Geometry and of Algebraic Topology
separately.

Theorem 1.1.1. [6, Thm 6.4.1] Let M be an oriented smooth m-dimensional closed
manifold. Then the Poincaré pairing

Hk
dR(M)×Hm−k

dRc (M) → R

([ω], [τ ]) 7−→
∫
M

ω ∧ τ

is non degenerate.

Remark 1.1.2. This is equivalent to the statement that the homomorphism

PD : Hk
dR(M) −→ Hm−k

dRc (M)∗

[ω] 7→ ([τ ] 7−→
∫
M

ω ∧ τ)

is an isomorphism. In general, i.e. when M does not satify all the above conditions, we
say that a manifold M satisfies Poincaré Duality if PD is an isomorphism. From this it
follows that for any Q ⊂ M k-dimensional closed submanifold we can define the linear
form ΛQ([ω]) :=

∫
Q
ω, which, since PD is an isomorphism, gives us a unique de Rham

cohomology class τQ, which satisfies∫
M

ω ∧ τQ =

∫
Q

ω.

We say that the class τQ represents our surface Q. This hints at two things. First, we can
consider when the opposite of the above is true: when can we represent a cohomology
class by some submanifold? Secondly, the Poincaré pairing hints at the definition of the
intersection form.

The above formulations were taken from Salamon’s Lecture Notes: An Introduction
to Differential Topology [6], see Appendix Subsection 6.2. Next we will look at the same
statement in singular (co)homology, which is isomorphic to de Rham cohomology, with
real coefficients.

Theorem 1.1.3. [4, Cor 39.9] Let M be an oriented m-dimensional closed topological
manifold with fundamental class [M ] ∈ Hm(M ;Z). Then

Hk(M) −→ Hm−k(M)
α 7−→ α ∩ [M ]

is an isomorphism.
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1 SURFACE REPRESENTATION

1.2 Smoothing Continuous Functions

As discussed in Remark 1.1.2, we can represent surfaces by cohomology classes. Now we
will consider the opposite, representing homology classes by preferably smooth surfaces.
To ensure that these surfaces are indeed smooth, we will need the following standard re-
sults from Differential Topology, which allow us to smooth continuous functions without
changing their homotopy class.

Theorem 1.2.1 (Whitney Approximation Theorem). [3, p 138] Let N andM be smooth
manifolds and F : N → M a continuous function. Then F is homotopic to a smooth
map F̃ : N →M .

Further, if F is already smooth on some closed subset A ⊂ N , then we can ensure
that F̃

∣∣
A

= F
∣∣
A

First, we need to prove the following Lemma:

Lemma 1.2.2. For any continuous function F : N → Rm, given any continuous func-
tion δ : N → R>0, there exists a smooth map F̃ : N → Rm such that:

|F (x)− F̃ (x)| < δ(x), ∀ x ∈ N.

Moreover, if A ⊂ N is closed and F is already smooth on A, then F̃ can be chosen in
such a way that F̃

∣∣
A

= F
∣∣
A
.

Proof. If F is smooth on A, we can find some neighborhood U of A on which F
∣∣
A
has

a smooth extension, we will call this extension F0. If we do not have such a set A, then
we set U = A = ∅. Let

U0 := {y ∈ U : |F0(y)− F (y)| < δ(y)}

It is readily seen that A ⊂ U0, since by definition F0

∣∣
A

= F
∣∣
A
. Next we will show

that we can find a countable open cover {Ui}i of N\A, and points vi ∈ Rm such that
|F (y)− vi| < δ(y) for all y ∈ Ui.

To do this, let, for all x ∈ N\A, Ux be a neighborhood of x contained in N\A, such
that for all y ∈ Ux:

δ(y) >
1

2
δ(x) and |F (y)− F (x)| < 1

2
δ(x).

Then, if y ∈ Ux, we have |F (y)−F (x)| < δ(y). The collection of all these Ux is a open
cover of N\A. Choose a countable subcover {Uxi}, and write Ui = Uxi and vi = F (xi),
and so we get |F (y)− vi| < δ(y) for all y ∈ Ui, as desired.

Now let {ρ0} ∪ {ρi}i be a partition of unity subordinate to the cover {U0} ∪ {Ui}i of
N , and define:

F̃ : N −→ Rm

y 7−→ ρ0(y)F0(y) +
∑

ρi(y)vi.
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1.2 Smoothing Continuous Functions

Then F̃ is smooth, equal to F on A, and for any y ∈ N :

|F̃ (y)− F (y)| =
∣∣∣∣ρ0(y)F0(y) +

∑
ρi(y)vi −

=1︷ ︸︸ ︷(∑
i>0

ρi
)
F (y)

∣∣∣∣
6 ρ0(y)|F0(y)− F (y)|+

∑
i>1

ρi|vi − F (y)|

< ρ0(y)δ(y) +
∑
i>1

ρi(y)δ(y) = δ(y).

�

Proof of the Whitney Approximation Theorem. By the Whitney Embedding Theorem
[3, p 133], we can assume that M is a submanifold of some Rm. Let U be a tubular
neighborhood of M ⊂ Rm, and let r : U → M be the smooth retraction defined by
r := π ◦ exp−1 (See Theorem 6.3.1). For all x ∈M define:

δ(x) = sup{ε 6 1
∣∣Bε(x) ⊂ U},

which is a continuous function. Let δ̃ := δ ◦ F : N → R. By Lemma 1.2.2, there exists
a smooth map F̃ : N → Rm that is δ̃-close to F . Define:

H : N × I −→ M

(p, t) 7−→ r((1− t)F (p) + tF̃ (p)).

This is well defined since, by definition |F̃ (p) − F (p)| < δ̃(p) = δ(F (p)) for all p ∈ M ,
which means that F̃ (p) is contained in a ball of radius δ(F (p)) around F (p). Since this
ball is contained in U , so is the line segment from F (p) to F̃ (p).

This proves that H is a homotopy with H0 = F and H1 = r ◦ F̃ . �
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2 Connection to the Intersection Number

2.1 Representation

Having proven that we can smooth submanifolds, let us prove the first statement hinted
at by Remark 1.1.2, namely that every (co)homology class can be represented by a
smooth submanifold. This statement is not true in general, however for submanifolds of
4-manifolds, in particular for surfaces, this is always possible.

The ability to go back and forth between surface representative and homology classes
so easily is very powerful since it allows us to use both the geometric and algebraic tools
developed in Differential Geometry and Algebraic Topology, respectively. This will be
used extensively in the proof of Theorem 4.2.1, the central result of this thesis.

We assume our manifold to be simply connected, thus we get a representative im-
mersed surface almost for free by the Hurewicz theorem. The main focus of the following
proof will be to modify our immersed surface, such that it becomes an embedded one,
while preserving its homology.

Lemma 2.1.1. [7, p 112] Let M be closed, oriented and simply-connected smooth 4-
manifold. Then every elemnt of 〈a〉 ∈ H2(M ;Z) can be represented by a smooth embedded
surface S, i.e. if we move to de Rham cohomology we want that for all [ω] ∈ H2

dR(M) :∫
S
ω =

∫
M
ω ∧ α, where α is exactly 〈a〉 modulo our choice of (co)homology theory.

Proof. Since M is simply connected, by the Hurewicz Theorem, we can find some map
f : S2 → M which maps to 〈a〉 under the Hurewicz map. We know that f can be
choosen to be smooth by the Whitney Approximation Theorem.

Further, f can be chosen as an immersion by modifying it in local coordinates. Let
ϕ : U → B2 and ψ : V → B4 be coordinate charts on S2 and M . Write f̃ : B2 →
B4; f̃(x) := ψ ◦ f ◦ ϕ−1(x). We can then modify this locally by choosing some bump
function

ρ : B2 → [0, 1] : ρ(x) =

{
1 x = 0

0 |x| > 2
3
,

and a matrix A ∈ R4×2. Now define g̃ : B2 → B4 as g̃(x) := f̃(x) + ρ(x)Ax. Then g̃
is an immersion for some suitable A. By making sure that |A| is small, f̃ and g̃ will be
homotopic via F̃ (x, t) = (1− t)f̃(x) + tg̃(x). Going back to M we still have a homotopy
via F

∣∣
U

= ϕ−1 ◦ F̃ ◦ ϕ. By choosing an atlas with a partition of unity subordinate to
the open cover we can make sure that df(x) is injective for all x ∈M .

By the same method we can ensure that all self intersections of f are transverse double
points, since we will be able to modify f locally if more than two points intersect. And
so, since the points of the self intersection are isolated by transversality, we have at most
finitely many such points.

Let p, q ∈ S2 be such a self-intersection. That means p 6= q and f(p) = f(q) and
there exist open neighborhoods A and B of p and q such that f(A) t f(B) at f(p). Now
let U be a connected, open neighborhood of M around f(p), such that f−1(U) = AtB.
Choose a coordinate chart ϕ : U → R4 ∼= C2, such that
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2 CONNECTION TO THE INTERSECTION NUMBER

B

A
f

U

f(A)f(B)

f(p) ϕ

ϕ(U)

ϕ(f(A))

ϕ(f(B))

0

Figure 2.1: ϕ(f(A)) and ϕ(f(B)) in C2

ϕ(f(p)) = ϕ(f(q)) = 0

ϕ(U) = BC2(0, 1)

ϕ(f(A)) = {z ∈ C2
∣∣ z2 = 0, |z| < 1}

ϕ(f(B)) = {z ∈ C2
∣∣ z1 = 0, |z| < 1}.

Notice that DA := ϕ(f(A)) and DB := ϕ(f(B)) are two unit 2-disks. Next we will
show that ∂DA ∪ ∂DB is a Hopf link [5].

First notice that ∂DA and ∂DB are both contained in S3 ⊂ C2. For simplicity we
will first consider "slices" of S3. View C2 as R4 and consider:

St := S3 ∩ {(x, y, z, t0) ∈ R4
∣∣ t0 = t}.

Heuristically, it can be helpful to view t as a variable representing time. With little
consideration it becomes clear that St is the 2-sphere in the first three coordinates
of radius

√
1− t2, and so for |t| > 1 the set is empty. For t = 0 we can see that

∂DA ∩ S0 = ∂DA, i.e. the 1-sphere in the first two coordinates. On the other hand,
∂DB ∩ S0 = {(0, 0,±1)}. For different values of t 6= 0 the intersection of St with DA is
empty and ∂DB ∩ St = {(0, 0,±

√
1− t2)}.

Next observe that: ⋃
·

t∈[−1,0]

St ∼= D3 and
⋃
·

t∈[0,1]

St ∼= D3.

This means we can view S3 as D3 ∪S2 D3, using the identity as the attachment map.
By comparing this with our slices above, we can see that ∂DA is the equator of S2.
Our other circle ∂DB is a line through our 3-disks from (0, 0,−1) to (0, 0, 1). When the
3-disks get glued together, this line forms a circle.

The linking number is exactly the intersection number DA ·∂DB, which is ±1 depend-
ing on the orientation. It follows that the loops ∂DA and ∂DB link exactly once making
a Hopf Link. See Appendix 6.5. Knowing this, we can now resolve the self-intersection
by realizing that the Hopf link is the boundary of ϕ(f(A tB)):

8



2.1 Representation

Figure 2.2: Hopf Link Figure 2.3: Hopf Link in S3

∂ϕ(f(A tB)) = ∂{z ∈ C2
∣∣ z1z2 = 0, |z| 6 1}

= {z ∈ C2
∣∣ z1z2 = 0, |z| = 1}

= {z ∈ C2
∣∣z2 = 0, |z| = 1} ∪· {z ∈ C2

∣∣z1 = 0, |z| = 1}
= ∂DA ∪· ∂DB

is exactly a Hopf link. We remove the disks ϕ(f(A)) and ϕ(f(B)) and replace them
with

Ω := {(z1, z2) ∈ D4
∣∣ z1z2 = ρ(z)},

where

ρ(z) =

{
1 |z| 6 1/4

0 |z| > 3/4

is a smooth bump function. One quickly verifies that Ω is a connected, smooth and
oriented 2-manifold and ∂Ω = ∂DA ∪· ∂DB. Since Ω is a manifold, it follows that the
self-intersection is removed.

We can consider how the genus is affected by this operation, by first considering the
Euler characteristic. From a cellular perspective, to get the new surface, we discard two
2-cells, and replace them with a new 2-cell. To do this, we also need to add a 1-cell, to
attach the 2-cell along:

χold − χnew = 2

By the formula χ = 2− 2g, it follows that the genus increased by one.
We can now repeat the whole process for all double-points, and so the resulting

surface will be an embedding.
Removing the double point does not change the homology thanks to excision. More

specifically, let S be the surface before removing a double point, and let S∗ be the surface
after. Let us also say that we only changed the surface in some ball B ⊂ M . Write
X = B ∩ S and X∗ = B ∩ S∗. Then ∂X = ∂X∗, and X and X∗ represent the same
homology class in H2(B), since H2(B) trivial. These two facts imply that they also
represent the same homology class in H2(B, ∂B).

Write M◦ := M\B. Then, by Mayer-Vietoris, we get:

9



2 CONNECTION TO THE INTERSECTION NUMBER

0 ∼= H2(S
3) −→ H2(M

◦)⊕H2(B)
∼−→ H2(M) −→ H1(S

3) ∼= 0.

Note that for this to work we need to expand M◦ and B by a bit, such that the union
of their interiors gives the whole space. Since the surfaces S and S∗ represent the same
homology class within M◦, and they represent the same class within B. By the above
isomorphism it follows that, they also represent the same homology within H2(M).

�

2.2 Intersection

We will now show for general manifolds, that if surface representatives exist, their in-
tersection number coincides exactly with the Poincaré pairing. To do this, we will first
carefully construct a representative of a given submanifold, a so called Thom class.

Let Ql ⊂ Mm be a closed oriented submanifold of some oriented manifold without
boundary. Let TQ⊥ε be the ε-neighborhood of the zero section in the normal bundle,
and let Uε be the tubular ε-neighborhood of Q. For ε small enough we know by the
Tubular Neighborhood Theorem, that the map exp : TQ⊥ε → Uε is a diffeomorphism.
Now let τε ∈ Ωm−l

c (TQ⊥) be a Thom form such that:

supp(τε) ⊂ TQ⊥ε , dτε = 0, π∗τε = 1.

We define τQ ∈ Ωm−l(M) as τQ := (exp−1)∗τε on Uε and zero everywhere else.

Proposition 2.2.1. [6, p 183] Let Q ⊂ M and τQ ∈ Ωm−l(M), the representative as
above. Let P be a compact oriented smooth (m − l)-manifold without boundary and let
f : P →M be a smooth map transverse to Q. Then

Q · f =

∫
P

f ∗τQ
(∗)
=

∫
M

τQ ∧ τP .

Remark 2.2.2. In the above Proposition, (∗) follows from Remark 1.1.2 when we assume
f to be an embedding.

Proof. By assumption f−1(Q) is a finite set which we will denote by:

f−1(Q) =: {p1, . . . , pn}

and observe that:

Tf(pi)M = Tf(pi)Q⊕ im df(pi), i = 1, . . . , n.

Since dim P + dim Q = dim M , the derivative df(pi) : TpiP → Tf(pi)M is an injective
linear map and hence its image inherits an orientation from TpiP . The intersection
index ι(pi;Q, f) ∈ {±1} is obtained by comparing orientations, and, by definition, the
intersection number is then the sum of these indeces:
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2.2 Intersection

Q · f =
n∑
i=1

ι(pi;Q, f).

It follows from the injectivity of df(pi) that the restriction of f to a sufficiently small
neighborhood Vi ⊂ P of pi is an embedding. Its image is transverse to Q. Choosing
ε > 0 sufficiently small and shrinking Vi, we many assume that the Vi are pairwise
disjoint and that the tubular neighborhood Uε satisfies:

f−1(Uε) =
⋃
i6n

Vi.

Since supp(τQ) ⊂ Uε, hence supp(f ∗τQ) ⊂ f−1(Uε) =
⋃
i6n Vi and so:

∫
P

f ∗τQ =
n∑
i=1

∫
Vi

f ∗τQ =
∑
i6n

∫
Vi

(exp−1 ◦f)∗τε (1)

Here the second equation uses the exponential map and the Thom form τε = exp∗τQ ∈
Ωc(TQ

⊥) with support in TQ⊥ε .
Now choose a local trivialization

ψi : TQ⊥
∣∣
Wi
→ Wi × Rm−l

of the normal bundle TQ⊥ over a contractible neighborhood Wi ⊂ Q of f(pi) such that
the open set TQ⊥ε

∣∣
Wi

is mapped diffeomorphically onto Wi × Bε, where Bε is the open
ball of radius ε in Rm−l. Let τi ∈ Ωm−l(Wi ×Bε) be the Thom form given by

ψ∗i τi = τε.

Equation (1) gives us∫
P

f ∗τQ
(1)
=
∑
i6n

∫
Vi

(exp−1 ◦ f)∗τε =
∑
i6n

∫
Vi

(ψi ◦ exp−1 ◦ f)∗τi (2)

Now consider the composition:

fi := π′′ ◦ ψi ◦ exp−1 ◦f
∣∣
Vi

: Vi → Bε.

If ε > 0 is chosen sufficiently small, this is a diffeomorphism; it is orientation preserving
if ι(pi;Q, f) = 1, and orientation reversing otherwise. Since Wi is contractible, there is
a homotopy ht : Vi → Wi such that

h0 ≡ f(pi) and h1 = π′ ◦ ψi ◦ exp−1 ◦f
∣∣
Vi

: Vi → Wi.

And so
h1 × fi = ψ ◦ exp−1 ◦f

∣∣
Vi

: Vi → Wi ×Bε.

11



2 CONNECTION TO THE INTERSECTION NUMBER

Moreover, the pullback of the Thom form τi ∈ Ωn(Wi×Bε) under the homotopy ht× fi
has compact support in [0, 1]× Vi. It now follows that∫

Vi

(ψi ◦ exp−1 ◦f)∗τi =

∫
Vi

(h1 × fi)∗τi (by definition)

=

∫
Vi

(h0 × fi)∗τi (by homotopy)

= ι(pi;Q, f)

∫
{f(pi)×Bε}

τi (orientation of f)

= ι(pi;Q, f) (by definition of τi)

By combining with (2), we find that:∫
P

f ∗τQ =
∑
i6n

ι(pi;Q, f) = Q · f.

�
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3 Intersection Forms

3.1 Symmetric Bilinear Forms

Before considering intersection forms on manifolds, it will be useful to first familiarize
ourselves with the properties of general symmetric bilinear forms.

Let us consider some finitely generated free abelian group A and let Q be some
symmetric bilinear form over A.

Definition 3.1.1. [7, p 120] Let A and Q be as above.

1. The rank rk(Q) is the dimension of A.

2. The signature σ(Q) of Q is the number of positive eigenvalues b+ minus the
number of negative eigenvalues b−.

3. Q is even Q(α, α) ≡2 0 (called odd otherwise).

4. If for all non-zero a ∈ A : Q(a, a) > 0 we call Q positive definite.

5. If for all non-zero a ∈ A : Q(a, a) < 0 we call Q negative definite.

6. If neither of the above two definitions hold, we call Q indefinite.

7. The direct sum Q = Q1 ⊕Q2 of the forms Q1 and Q2 (defined on A1, A2 respec-
tively) is defined on A := A1 ⊕ A2 such that if a, b ∈ A split into a = a1 + a2 and
b = b1 + b2 with ai, bi ∈ Ai, then Q(a, b) := Q1(a1, b1) +Q2(a2, b2).

8. If k > 0, then kQ denotes the k-fold sum
⊕

kQ. If k < 0, then kQ := |k|(−Q). If
k = 0, then kQ := 0 is the trivial group.

Remark 3.1.2. The signiture is additive, i.e.: sign(Q′ ⊕Q′′) = sign Q′ + sign Q′′.

The following two small Lemmas will prepare us in proving that the intersection form
is unimodular on the manifolds that we are considering.

Lemma 3.1.3. [1, p 10] For any x ∈ A define Lx ∈ A∗ by Lx(y) = Q(x, y). We then
get a homomorphism: L : A → A∗. The form Q is unimodular if and only if L is an
isomorphism.

Proof. Fix a basis (a1, . . . , an) ⊂ A and choose the dual basis (a∗i )i ⊂ A∗ (each a∗i is
defined by a∗i (aj) = δij). Since L(ai) =

∑
j Q(aj, ai)a

∗
j , the matrix representation of

L in this basis is B =
(
Q(ai, aj)

)
ij
. This matrix is invertible (over Z) if and only if

detB = ±1 which is true if and only if L is an isomorphism. �

Lemma 3.1.4. Suppose that the restriction of the symmetric bilinear form Q to B < A
is unimodular. Then Q := Q

∣∣
B
⊕Q

∣∣
B⊥, where B⊥ := {y ∈ A

∣∣ Q(x, y) = 0,∀x ∈ B}.

13



3 INTERSECTION FORMS

Proof. If b ∈ B ∩ B⊥ and b 6= 0, then Q(a, b) = 0,∀a ∈ B, contradicting the fact
that Q

∣∣
B

is unimodular. Now for all x ∈ A we can consider the function b → Q(x, b)

on B. By unimodularity of Q
∣∣
B
, and Lemma 3.1.3, there is a unique y ∈ B such that

Q(x, b) = Q(y, b), ∀b ∈ B.
Now x− y ∈ B⊥, and so x = b+ (x− b) ∈ B + B⊥. And since x ∈ A was arbitrary,

we find that A = B ⊕ B⊥. The unimodularity of Q
∣∣
B⊥ follows from the fact that

detQ = detQ
∣∣
B
· detQ

∣∣
B⊥ = ± detQ

∣∣
B⊥ . �

3.2 Intersection Form

Now we can finally look at the definition of an intersection form on a manifold. I want
to stress that this definition arises naturally when considering the questions that come
up in Remark 1.1.2.

Definition 3.2.1. [1, p 7] Let M be a closed, simply connected, oriented 4-manifold.
The symmetric bilinear form

QM : H2(M ;Z)×H2(M ;Z) −→ Z
(α, β) 7−→ (α ∪ β) ∩ [M ]

is called the intersection form of M .

Remark 3.2.2. By the above defintion we can immediately make some observations:

1. Due to Poincaré duality we can write:

QM : H2(M ;Z)×H2(M ;Z) −→ Z
(a, b) 7−→ (a∗ ∪ b∗) ∩ [M ].

2. By the equivalence of de Rham and Singular Cohomology, it follows that

QM(a, b) =

∫
M

α ∧ β

where α and β are the representative 2-forms of a and b, respectively.

3. Since QM is bilinear, it vanishes on torsion elements, i.e. if a or b is a torsion
element, then QM(a, b) = 0. This means that we can choose a basis for the free
part of H2(M ;Z) and represent QM by a matrix of determinant ±1. [7, p 120]

4. By changing the orientation of M we change the signature:

sign QM =: sign M = −sign M.

5. Also, by Theorem 4.1.1 and Remark 3.1.2, we get that

sign(M#N) = sign M + sign N.

14



3.2 Intersection Form

Example 3.2.3. Consider the space S2×S2. To calculate the intersection form QS2×S2

we first have to calculate the structure of the cohomology ring.
S2×S2 can be constructed by a 0-cell, two 2-cells, and a 4-cell. So we get the following

group structure:

H0(S2 × S2) = Z, H2(S2 × S2) = Z2, H4(S2 × S2) = Z

with all other homologies being zero. The ring structure of H•(S2 × S2) can be found
by the Künneth Formula:

H•(S2 × S2) ∼= H•(S2)⊗H•(S2) ∼= Z[α]/(α2)⊗ Z[β]/(β2)

where α and β are the generators of the two H2(S2).
From this we can see that the intersection form is given by:

QS2×S2 =

(
0 1
1 0

)
From the matrix form the following properties follow from definition. First QS2×S2 is

even, but indefinite. Also the signature σ(S2 × S2) = 0.

Lemma 3.2.4. Let M be a simply connected, closed smooth 4-manifold. Then the
intersection form QM is unimodular, i.e. detQM = ±1. [7]

Proof. By the dual coefficients theorem and our assumption thatM is simply connected,
we find that H2(M ;Z) is a free Z-module. By Lemma 3.1.3 we know that QM is
unimodular if and only if the map

Q̂M : H2(M ;Z) −→ Hom(H2(M ;Z),Z)
α 7−→ x 7→ QM(α, x)

is an isomorphism. We will argue that this map coincides with the Poincaré duality
morphism, which we know to be an isomorphism, given by

H2(M ;Z)
∼−→ H2(M ;Z)

α 7−→ α∗

where α∗ ∩ [M ] = α. Since torsion elements vanish in QM we can assume H2(M ;Z) to
be free. By the dual universal coefficient theorem we have the following isomorphism

H2(M ;Z)
∼−→ Hom(H2(M ;Z),Z)

α∗ 7−→ x 7→ α∗ ∩ x.

By Poincaré Duality we get the isomorphism: H2(M ;Z)
∼→ Hom(H2(M ;Z),Z). By

general properties of the cap product we know

QM(α∗, β∗) = (α∗ ∪ β∗) ∩ [M ] = β∗ ∩ (α∗ ∩ [M ]) = β∗ ∩ α =: QM(α, β∗)

and so the above isomorphism coincides with Q̂M . �
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4 Main Results

4.1 Intersection Forms and Connected Sums

Before proving Whitehead’s theorem, we will first present a small result which can
be useful when calculating intersection forms or constructing manifolds with certain
intersection forms.

We will need the connected sum, which, intuitively speaking, is the "simplest way"
of combining two manifolds of the same dimension, M and N , into one which we write
as M#N .

More rigorously, by [7, p 117], we choose a small open m−ball in each manifold and
remove it. We call the remaining two manifoldsM◦ and N◦. Next we embed Sn−1×[0, 1]
as "collars" to the boundary, i.e. the (m−1)-sphere. Sn−1×1 gets glued onto ∂M◦, and
Sn−1× [0, 1) is sent to the interior of M◦. Similarly for N , Sn−1× 0 gets identified with
∂N◦ and Sn−1× (0, 1] is sent to the interior. We then identify the collars Sn−1× [0, 1] in
the obvious way to obtainM#N , this also forces the identification map to be orientation
reversing.

Theorem 4.1.1. If M and N are closed, simply connected 4-manifolds, then:

QM#N = QM ⊕QN

Proof. This follows from the Mayer-Vietoris Sequence. By slight abuse of notation we
write N,M ⊂M#N . We then have that M ∩N = S3. Hence:

0 ∼= H2(S
3) −→ H2(M)⊕H2(N) −→ H2(M#N) −→ H1(S

3) ∼= 0.

�

4.2 Whitehead’s Theorem on Intersection Forms

It is obvious that if two 4-manifolds are homotopy-equivalent, they have the same in-
tersection form, but it is not clear if the opposite assertion holds. Because we assumed
our manifolds to be simply connected, the first and the third cohomology groups vanish
(thanks to Poincaré Duality), and so H2(M) ∼= H2(M) ∼= Hom(H2(M),Z) has no tor-
sion, due to the Dual Universal Coefficients Theorem [4, Cor 29.9]. Thus it reasonable
to conjecture that QM could contain all the information about M we need to identify
it up to homotopy-equivalence. This is exactly what Whitehead’s Theorem on Intersec-
tion Forms tells us, which classifies all simply connected topological 4-manifolds up to
homotopy equivalence by their intersection form.

Theorem 4.2.1 (Whitehead’s Theorem on Intersection Forms). [7, p 140] The simply
connected, closed, topological 4-manifolds M and N are homotpoy equivalent if and only
if QM

∼= QN .

17



4 MAIN RESULTS

Proof. This proof has two broad steps, first showing that M is homotopy equivalent to
a simpler space that we construct. Second, showing that this space is only determined
by the intersection form of M .

By simple-connectedness and Poincaré Duality, we know that H1(M) = H3(M) = 0.
Further, by Hurewicz’s Theorem, we find that H2(M) ∼= π2(M). Since M is simply
connected and has no torsion, it is isomorphic to some

⊕
m Z. Thus we can find a map:

f : S2 ∨ · · · ∨ S2 −→M

which induces the isomorphism π2(f) : π2(S
2 ∨ · · · ∨ S2)

∼→ π2(M) ∼= H2(M). This
map induces an isomorphism on all homologies but the fourth. This can be solved by
considering M◦ = M\4-ball, which has no H4 by:

0 −→

∼=0︷ ︸︸ ︷
H4(∂X) −→ H4(X) −→

∼=Z︷ ︸︸ ︷
H4(X, ∂X) −→

∼=Z︷ ︸︸ ︷
H3(∂X) −→ 0

where X := M\4-ball. By Theorem 6.4.1, we can see that M◦ is homotopy equivalent
to S2 ∨ · · · ∨ S2.

SinceM can be constructed fromM◦ by gluing a 4-ball toM◦, we deduce, by Theorem
6.4, that a space with the same homotopy type can be constructed by gluing a 4-ball B4

to
∨
m S

2. It follows that

M ≈
∨
m

S2 ∪ϕ D4

for some suitable attaching map ϕ : ∂D4 →
∨
m S

2. The homotopy type of M is
completely determined by the homotopy class of ϕ, which we will view as an element of
π3(
∨
m S

2). Moreover, the fundamental class [M ] ∈ H4(M) corresponds to the class of
the attached 4-ball [D4], since by definition [M ] is a generator of H4(M) and by [4, Cor
20.9], not having cells of dimension 3 or 5 implies that [D4] also generates H4(M). Now
we start step 2, showing that the homotopy class of ϕ is completely determined by the
intersection form of M .

Now think of each S2 as a copy of CP 1 ⊂ CP∞. For a quick reminder of the properties
of CP∞, see Appendix 6.6. Now embed∨

m

S2 ⊂×
m

CP∞

and consider the sequence

π4
(×
m

CP∞
)
→ π4

(×
m

CP∞,
∨
m

S2
)
→ π3

(∨
m

S2
)
→ π3

(×
m

CP∞
)
. (1)

Since CP∞ is an Eilenberg-MacLaneK(Z, 2)-space, the only non-trivial homotopy group
of ×mCP∞ is π2, and so by (1) we get an isomorphism:

π4
(×
m

CP∞,
∨
m

S2
) ∼= π3

(∨
m

S2
)
. (2)

18



4.2 Whitehead’s Theorem on Intersection Forms

The above π4 consists of maps D4 → ×mCP∞ that take the boundary ∂D4 ∼= S3 to∨
m S

2. Consequently, the isomorphism in equation (2) associates to each ϕ : S3 →∨
m S

2 the class of an extended map:

ϕ̃ : D4 −→×
m

CP∞.

Further, since the inclusion
∨
m S

2 ⊂×m
CP∞ induces an isomorphism on π2, we can

see by a different part of the exact sequence seen in equation (1), that for both π2 and
π3 the pair (×m

CP∞,
∨
m S

2) must vanish. By Hurewicz’s theorem we can see that:

π4
(×
m

CP∞,
∨
m

S2
) ∼= H4

(×
m

CP∞,
∨
m

S2
)

Through this identification, the class of ϕ̃ in π4 is sent to the class

ϕ̃∗[D
4] ∈ H4

(×
m

CP∞,
∨
m

S2
) ∼= H4

(×
m

CP∞
)
.

where ϕ̃∗ is the map induced by the map ϕ̃ by homology. Here the second equivalence
holds because the second and third homology of

∨
m S

2 vanishes. Additionally, due to
the lack of torsion we have a natural duality:

H4
(×
m

CP∞
)

= Hom
(
H4(×

m

CP∞), Z
)
.

Hence, in order to determine ϕ̃∗[D4], it is sufficient to evaluate all classes α ∈ H4 on it.
Put differently, our class ϕ ∈ π3(

∨
m S

2) (and so the homotopy type of M) is completely
determined by the values αk(ϕ̃∗(D4)) for some basis {αk}k of H4(×mCP∞)

One way to obtain such a basis is by cupping the classes representing each S2, thus
we get

H4
(×
m

CP∞
)

= Z{ωi ∪ ωj}i,j

where ωk denotes the 2-class dual to [CP 1] inside the kth copy of CP∞. Since

H2
(×
m

CP∞
) ∼= H2

(∨
m

S2
) ∼= H2(M◦) ∼= H2(M),

we can see that each class ωk can be viewed as a 2-class wk of M . More specifically, the
inclusion ι :

∨
m S

2 ↪→×m
CP∞ extends via ϕ̃ to

M ≈
∨
m

S2 ∪ϕ D4 ι+ϕ̃−−→×
m

CP∞ where ι+ ϕ̃ =

{
ι p ∈

∨
m S

2

ϕ̃ p ∈ D4

The pullbacks wk = (ι+ϕ̃)∗ωk make a basis of H2(M). Now evaluating ωi∪ωj on ϕ̃∗[D4]
in×m

CP∞ yields the same result as pulling ωi and ωj back to M , cupping there, and
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4 MAIN RESULTS

then evaluating on [D4]:

(ωi ∪ ωj)(ϕ̃∗[D4]) =
(
(ι+ ϕ̃)∗(ωi ∪ ωj)

)
[D4]

=
(
(ι+ ϕ̃)∗ωi) ∪

(
(ι+ ϕ̃)∗ωj)[D

4]

= (wi ∪ wj)[D4].

As we have mentioned before, the class [D4] is exactly the fundamental class [M ] of M ,
it follows that

(wi ∪ wj)[D4] = QM(wi, wj).

Since {w1, . . . , wm} is a basis of H2(M), we get the whole intersection form. On the
other hand, as we have argued, by staying in×m

CP∞ and evaluating all the (ωi∪ωj) on
ϕ̃∗[D

4] we fully determine the class of ϕ in π3
(∨

m S
2
)
, and thus determine the homotopy

type of M .
�

Example 4.2.2. [7, p 124] The complex projective plane CP 2 has intersection form
QCP 2 = (+1), since H2(CP 2) = Z. The second homology is generated by [CP 1], which
can easily be seen by cellular homology. By Remark 3.2.2 we can see that QCP 2 = (−1).

Let us now consider S2×̃S2, the unique non-trivial sphere bundle over S2. Uniqueness
follows since our S2-bundle over S2 = D2

1 ∪D2
2 is described by the equitorial gluing map

S1 → SO(3). This is sufficient because bundles over D2, a contractible space, are
trivial. By π1(SO(3)) = Z2 it follows that there are only two topologically distinct
sphere-bundles over S2.

Viewing D2 as a hemisphere, we can construct S2×̃S2 by gluing two copies of D2×S2

together along the equator of the base-sphere, using the identification of S2-fibres that
rotates them once as we travel along the equator. The intersection form is:

QS2×̃S2 =

(
1 1
1 0

)
.

By a simple change of basis, we can see that:

QS2×̃S2 =

(
−1 0
0 1

)
= [−1]⊕ [1] = QCP 1 ⊕QCP 1 .

By the above theorem we see that S2×̃S2 ∼= CP 1#CP 1.
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5 Outlook
My aim of this last section is to give an outlook on the on the world of 4-manifolds.

To start with, we will look at the reverse statement of Theorem 4.1.1, which holds
for 4-manifolds.

Theorem 5.0.1. [7, p 119] If M is simply connected and QM splits into a direct sum
QM = Q1 ⊕ Q2, then there exists topological 4-manifolds N1 and N2, with intersection
forms Q1 and Q2, such that M = N1#N2

Another small statement about intersection forms on 4-manifolds is the following.

Lemma 5.0.2. If M4 is the boundary of some oriented 5-manifold W 5, then

sign QM = 0.

It seems in line with general facts about manifolds we know, such as the fact that
the degree of a map restricted to the boundary is always zero, or that the intersection
number of a map restricted to the boundary with a submanifold is always zero. Having
said that, for 4-manifolds the inverse of the above statement holds as well.

Theorem 5.0.3 (V. Rokhlin). If a smooth oriented 4-manifold M has:

sign QM = 0

then there exists a smooth oriented 5-manifold W such that ∂W = M .

To finish our small outlook on the world of 4-manifolds, we consider Freedman’s
Classification Theorem.

Theorem 5.0.4 (Freedman’s Classification Theorem). For any integral symmetric uni-
modular form Q, there is a closed simply-connected topological 4-manifold that has Q as
its intersection form.

• If Q is even, there is exactly one such manifold

• If Q is odd, there are exactly two such manifolds, at least one of which does not
admit a smooth structure.

Corollary 5.0.5. If M and N are smooth, simply-connected, and have isomorphic in-
tersection forms, then M and N must be h-cobordant.

Corollary 5.0.6. If M and N have isomorphic intersections forms, then they are home-
omorphic.

In this thesis we have only considered manifolds up to homeomorphism. One can also
consider 4-manifolds up diffeomorphism, this study is very different and generally more
difficult. For example it is still an open question how many different smooth structures,
up to diffeomorphism, exist on S4. As is explained by in the aforementioned The Wild
World of 4-Manifolds [7].
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6 Appendix

6.1 Fundamental Classes

The fundamental class of a manifoldMm is a generator of the homology groupHm(M ;Z)
∼= Z. The fundamental class can be thought of as the orientation of the manifold. If
M is disconnected, a fundamental class is the direct sum of the fundamental classes for
each connected component.

6.2 Poincaré Duality

The following is take from Salamon’s Differential Geometry Lecture Notes [6, p 182].

Lemma 6.2.1. Here τQ is defined in Subsection 2.2. Let Q ⊂M and τQ ∈ Ωl(M), then∫
M

ω ∧ τQ =

∫
Q

ω

for every (m− l) form ω ∈ Ωm−l(M)

Proof. Denote the inclustion of the zero section in TQ⊥ by

ιQ : Q −→ TQ⊥.

For every closed form ω ∈ Ωm−l(M) we compute:

∫
M

ω ∧ τQ =

∫
Uε

ω ∧ τQ (1)

=

∫
TQ⊥

ε

exp∗ ω ∧ τε (2)

=

∫
Q

ι∗Q exp∗ ω (3)

=

∫
Q

(exp ◦ιQ)∗ω (4)

=

∫
Q

ω. (5)

Here, (3) follows from τε being a Thom class and TQ⊥ε ⊂ TQ⊥ being a star shaped
open neighborhood of the zero section. Step (5) follows from the fact that:

exp ◦ιQ : Q −→M

is just the inclusion. �

23



6 APPENDIX

6.3 Tubular Neighborhood Theorem

Theorem 6.3.1. Let N be a Riemannian n-manifold without boundary, let Q ⊂ N be a
compact m-dimensional submanifold without boundary, and let εQ := infq∈Q inj(q,N) >
0. For ε < εQ let:

TQ⊥ε :=
{

(q, w) ∈ TQ⊥
∣∣ |w| < ε

}
and Uε

{
p ∈ N

∣∣ inf
q∈Q

d(p, q) < ε
}
.

Then
TQ⊥ε −→ Uε
(q, w) 7−→ expq(w)

is a diffeomorphism.

6.4 Whitehead’s Theorem

The following formulation of Whitehead’s Theorem is taken from Hatchers excelent book
Algebraic Topology [2, p 346].

Theorem 6.4.1 (Whitehead’s Theorem). If a map f : X → Y between two cell com-
plexes induces an isomorphism

f∗ : πn(X)→ πn(Y )

for all n, then f is a homotopy equivalence. If f : X ↪→ Y is the inclusion, then X is a
deformation retract of Y .

The proof of will follow easily from the following technical lemma.

Lemma 6.4.2 (Compression Lemma). Let (X,A), (Y,B) be pairs of cellular com-
plexes such that B 6= ∅. For each n that X\A has cells of dimension n, assume that
πn(Y,B, y0) = 0 for all y0 ∈ B. Then every map f : (X,A)→ (Y,B) is homotopic relA
to a map X → B.

Proof. For n = 0 the condition πn(Y,B, y0) = 0 is equivalent to saying that (Y,B) is
0-connected. Now assume inductively that f has already been homotoped to take the
skeleton Xk−1 to B. If Φ is the characteristic map of a cell ek of X\A, the composition
f ◦ Φ : (Dk, Sk−1) → (Y,B) can be homotoped into B relSk−1 since πk(Y,B, y0) = 0 if
k > 0 or (Y,B) 0-connected for k = 0. This homotopy of f ◦ ϕ induces a homotopy
rel Xk−1 of f on the quotient space Xk−1 ∪ ek of Xk−1 ∪· Dk.

Doing this for all k-cells of X\A simultaneously, and taking the constant homotopy
on A, we obtain a homotopy f

∣∣
Xk∪A to a map which maps into B. This extends to a

homotopy on all of X.
Finitely many applications of the induction step finish the proof if the cells of X\A

are of bounded dimension. In general we perform the homotopy of the induction step
in the interval [1 − 1

2k
, 1 − 1

2k+1 ]. Any finite skeleton Xk is eventually stationary under
these homotpies, thus we get a well defined map ft such that f1(X) ⊂ B.

�

24



6.5 Linking Numbers and Homotopy Theory

Proof of Whitehead’s Theorem. Let us start with the case that f is the inclusion of a
subcomplex. Consider the long exact sequence of homotopy groups for the pair (Y,X):

· · · → πn(X) −→ πn(Y ) −→ πn(Y,X) −→ πn−1(X)→ . . .

Since πn(f) : πn(X) → πn(Y ) is an isomorphism for all n, the relative groups πn(Y,X)
are all zero. By applying the Compression Lemma on the identity (Y,X) → (Y,X) we
get a deformation retract of Y on X.

Now let us consider the general case. We first define the mapping cylinder Cf as
(X× I ∪· Y )/ ∼, where ∼ is given by (x, 1) ∼ f(x). We can see that Cf contains both Y
and X = X × {0} as subspaces. Moreover, we can see that Y is a deformation retract
of Cf , which makes these two spaces homotopy equivalent. So all that is needed to
complete this proof is to show that X and Cf are homotopy equivalent, which will be
done by showing that X is a deformation retract of Cf .

By the Cellular Approximation Theorem, we can assume f to be cellular, taking the
n-sekelton of X to the n-skeleton of Y , for all n. Then (Cf , X) is a pair of a cellular
complexes. Then we are done by the first paragraph (since X ↪→ Cf is the inclusion).

�

6.5 Linking Numbers and Homotopy Theory

Definition 6.5.1. A knot is a (topological) embedding of S1 into R3 or S3. The reason
one might consider S3 ∼= R3 ∪ {∞} is that it is compact. A link is a collection of knots
which do not intersect.

Definition 6.5.2. An ambient isotopy of Mm is a smooth map:

F : [0, 1]×M −→M

such that F0 = id.

Definition 6.5.3. Two knots are called equivalent if they are invariant under ambient
isotopy. If k, l : S1 → S3 are knots, and F an ambient isotopy, then k and l are equivalent
if k ◦ F1 = l.

Any embedding k that can be ambient isotoped to the standard unknot S1 ⊂ R3

is called an unknot.

Definition 6.5.4. The linking number of two knots: γ1, γ2 : S1 → R3 is one of the
following equivalent definitions:

1. The first definition is the one Gauss discovered:

link(γ1, γ2) =
1

4π

∫
S1×S1

det(γ̇1(s), γ̇2(t), γ1(s)− γ2(t))
|γ1(s)− γ2(t)|3

ds dt

2. A definition using intersection theory. Let Σ : D2 → R3 such that ∂ imΣ = imγ1,
then:

link(γ1, γ2) = Σ · γ2
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3. The linking number can also be defined as the number of crossings in the repre-
sentative diagram counted with sign divided by two.

4. More generally, for any two disjoint compact, oriented manifolds Mm, Nn ⊂ Rk+1

without boundary and total dimension n+m = k, the linking number is the degree
of the map

λ : M ×N → Sk, λ(x, y) :=
x− y
||x− y||

.

The Hopf-Link is the link that consists of two unknots with linking number ±1.

6.6 The Complex Projective Space CP∞

To construct CP∞ we take the direct limit of the spaces CP n as defined by cellular
homology. We know that πk(Sn) = 0 for k < n. Hence for k → ∞ we can see that all
homotopy groups for S∞ are zero, and it also has a cell structure. Thus, by Whitehead’s
Theorem 6.4, S∞ is contractable.

We can write S∞ as a fibre bundle of CP∞:

S1 −→ S∞ −→ CP∞.

By the homotopy sequence for Fibrations we can see that CP∞ is indeed the Eilenberg-
MacLane K(Z, 2).

6.7 Assumptions, Prerequisites and Notation

This thesis requires the reader to be familiar with some of the fundamental results of
Differential Geometry and Algebraic Topology. This includes the equivalence of simpli-
cial and de Rham cohomology, cellular decompositions and Poincaré Duality. Some of
the notation used can be found in the list below:

• Bn is the n-dimensional open unit ball.

• Dn is the n-dimensional unit disk (i.e. (Dn)o = Bn and Bn = Dn).

• Sn is the n-dimensional sphere.

• Hk
dR is the kth de Rham cohomology.

• Hk
dRc is the kth compactly supported de Rham cohomology.

• For any manifold M I will denote its fundamental class by [M ].
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