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Summary

We explore the Marked Random Connection Model (MRCM) in the subcritical and
supercritical regimes. The behavior of Large Components will be used to guide our

exploration.

In the subcritical regime we show that large components occupy a vanishing fraction of
the observation window. We do this by studying the correlation length, which describes

the tail behavior of components, and is an object of interest in its own right.

In the supercritical regime we show that the largest component occupies a strictly pos-
itive fraction of the observation window. Our analysis will require various ‘uniqueness’
statements, which ensure that distant clusters are indeed connected. We prove the
Grimmett-Marstrand theorem for the MRCM to help us sharpen our uniqueness state-

ments, which we can then employ to prove the desired result about large components.
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Notation and Terminology

Symbol Description

R The set of real numbers.

N The set of natural numbers (including 0).

Z The set of integers.

R>g The set of positive elements of R.

[a, b] The collection of integers {a,a +1,...,b—1,b}.

P The probability measure.

E The expected value.

ppp(X, 1) The law of the Poisson point process on a space X with
intensity measure pu.

i Standard symbol for a Poisson point process.

P Symbol used for the connection function.

1{-} Indicator function.

(M, p) The mark space with the associated probability measure.

X The space R? x M.

X The space R? x M, for some subset M C M.

Ay The box [—t,t]¢ x M with side-length 2t.

Ay The box [—t,t]¢ with side-length 2¢.

B, The ball of radius 7 € R>q.

Zy [ Jgasnz ¥ (y; a,b)dyp®?(d(a,b)). AZy is the expected num-
ber of neighbors for a typical vertex.

zZy ess suPgent [ iy ¥ (; @, 0)dyp®?(db).

&l The random connection model driven by 1. Written simply
as ¢ when 7 is clear from context.

&n, ') The random connection model with addition edges between

n and 7, but not 1’ and itself.



Description

MK

aext K

The random connection model &[] with 1’ overlaid, but no
additional edges.

The connected component of z in £&. We also write C, when
¢ is clear from context.

The probability that an inserted point at the origin o is con-
nected to the infinite cluster. We refer to it as the ‘percolation
probability’.

The critical intensity. The infimum over all A such that
6(A) > 0.

The probability that two inserted points z and y belong to
the same cluster in £[n™Y]. Also referred to as the ‘two-point
function’.

The probability that the inserted points z and y connect to
the same cluster in &[n]. Also referred to as the ‘restricted
two-point function’.

The internal boundary of the set K C R? given by 0K :=
{r e K|d(z,K°) <1}.

The external boundary of the set K C R? given by 0K :=
{re K°|d(z,K) <1}.




Chapter 1

Introduction

1.1 History & Motivation

Random spatial models serve as fundamental frameworks for understanding a diverse
range of phenomena, from epidemiological spread and material phase transitions to
the structure of social networks and communication systems. The common thread
amongst these models is the emergence of non-trivial large-scale behavior arising solely
from local (random) rules of interaction. A particularly significant emergent behavior
is the phase transition, where only a small change in parameters lead to dramatic shifts

in global system properties.

The first rigorous study of such models dates back to Ernst Ising. In his PhD thesis
in 1925, Ising considered a model of ferromagnetism, where up and down ‘spinsﬂ are
placed on the one-dimensional lattice Z, with a temperature parameter T' controlling
the interaction strength. Ising proved that in one dimension there is no phase tran-
sition. He incorrectly conjectured that his model displays no phase transition in any
dimension, a claim later disproven by Peierls in 1936 [Pei36] for the two-dimensional
case. In particular, it holds true that for all dimensions d > 2 there exists a critical
temperature T, > 0 which divides the parameter-space into a supercritical region where

magnetization occurs and a subcritical region where magnetization does not occulﬂ

The first rigorous mathematical treatment of a variety of percolation systems was done

by Broadbent and Hammersley in 1957 [BH57]. This is, in particularly, the first paper

!Each spin was represented as a +1 or —1.
2Conventionally, statistical physicists work with inverse temperature 8 = 1/T. In addition to being
mathematically convenient it helps align terminology: § > [. refers to supercritical and vice versa.



to consider what we now call Bernoulli bond percolation. Instead of temperature this
model considers a graph whose edges (or bonds) are open with some probability p €
[0,1]. In their ground-breaking paper they relate percolation to self-avoiding random
walks and use this to show that a non-trivial critical parameter p. € (0, 1) exists. The
Bernoulli bond percolation was extremely important as a model as it is possibly the

simplest geometric model exhibiting a phase transition.

Continuing this trajectory, Gilbert [Gil61] was the first to investigate continuum perco-
lation models with mathematical rigor in 1961. Gilbert introduced what is now known
as the Gilbert disk model, where points are randomly distributed in a plane according
to a Poisson point process with intensity A, and pairs of points are connected if they
lie within a specified distance of each other. Gilbert proves the existence of a critical
intensity on the plane, and thus a phase transition. Further, he manages to bound the

critical value from below using arguments from branching process theory.

The first generalization to what we now call the Random Connection Model (RCM)
was first considered by Penrose [Pen91] in 1991. Unlike the Gilbert model, where con-
nections between points are deterministic given their relative Euclidean distances, the
RCM allows for extra randomness to determine the existence of an edge. This gener-
alization expanded the model’s applicability to real-world systems where connectivity
depends on multiple factors beyond simple proximity. Penrose shows, amongst other

things, that under some mild assumptions the model is non-trivial.

A further generalization to the RCM is the Marked Random Connection Model (MRCM)
which allows for a variety of types. This is used to integrate multiple types of devices
into the same model, where each possible pair of devices changes the probability of
connection. While various instances of this model have been studied (see Section
at this level of generality the MRCM was only introduced in [DH22] in 2022. The past
decade has seen substantial advances in the understanding the RCM (and its various
generalizations). Researchers have developed sharp threshold results, more scaling laws
near criticality, and enhanced techniques for analyzing the model’s behavior in various

regimes (explored in the literature review in Chapter |3)).

1.1.1 Some applications

The RCM, MRCM and continuum percolation models more generally have been used to
model a large variety of processes since their inception. Edgar Gilbert himself invented
the Gilbert disk model while at Bell Labs and had radio stations and epidemiology in
mind as possible targets |Gil61].



The RCM is fairly easy to generate while displaying various realistic properties that
other models lack, especially with respect to geometric aspects. Thus, it is used broadly
as a test for various tests for graph processing (see e.g. [Tos+16]). Properties of the
RCM have also been used for statistical estimators [SMj17].

Applications are also found in computer science [DD22] and epidemiology |Bral4]. The
model has proven particularly valuable in capturing the inherent randomness in both

node placement and connection establishment that characterizes these systems.

Figure 1-1: Two instances of the same MRCM (with three marks) at two different
scales. Largest component in each observation window is highlighted. Within the
highlighted component points are colored based on their mark.

The MRCM featured in Figure will be used in all future figures as a representation
of the MRCM. I will give a short description of it here. It is a modification of AB
percolation. In essence, we have two marks (orange and blue), which can only connect
to each other but not themselves. And we have a green mark which is very rare, but

can connect to both orange and blue over long distances.

1.2 Thesis Aims

The process of generalizing models is an important way to better understand the limits
of known results and the effectiveness of our tools. Historically many gains have been
made by successful generalization. The aim of this thesis is to continue this tradition
by generalizing results and methods for the RCM and MRCM. This goal is guided by

the characterization of large components in the sub- and supercritical regimes.

10



There are two main avenues of achieving these new developments. First, I extend meth-
ods which have previously been developed for less general models such as the Poisson
Boolean Model or the Random grain model. The other avenue is via ‘translating’ meth-
ods developed for discrete models, such as Bernoulli Bond Percolation or the Random
Cluster Model to the MRCM.

The thesis is structured as follows. In Chapter 2] I formally construct the MRCM
using independent edge markings as in [DH22]. We also consider ways of modifying
the MRCM via thinnings and added points. The reader is assumed to have a basic
understanding of the Poisson point process, but no knowledge of the RCM or MRCM
is required. I also define connected components, the percolation probability and the

critical intensity along with other quantities of interest.

In Chapter |3| we review previous results in the field, both giving an overview of the
recent history, and taking note of specific results which will be important to our efforts.
Further, I will state and prove fundamental theorems which are required to work with
the MRCM, most notably the Mecke equation, which converts sums over Poisson points
to integrals over the respective density, the Russo formula for interpreting derivatives

the Stopping set Lemma which will allow us to consider connected components of the
MRCM.

The ultimate goal of Chapters [d] & [f]is to completely characterize the behavior of large
components. I will use this goal as motivation to guide the results, but allow some

digressions for auxiliary results.

In Chapter [4 we will work with the MRCM in the subcritical phase. The key results
will be what well call ‘sharpness’. It is required to prove various properties of the
correlation length, including its existence. The correlation length will then help us
characterize large components by determining the ‘correct scale’ to view the model at.
The intuition for the subcritical phase lies mostly in the fact that large components

become exponentially unlikely in their size.

In Chapter [5] we will consider the MRCM in the supercritical phase. In order to char-
acterize large components in this phase we require ‘uniqueness’ results. By definition
of this phase it will be easy to find long paths. The main difficulty in the supercritical
phase is ensuring that multiple long paths actually connect to each other with high

probability. The uniqueness events allow us to ‘glue’ such long paths together.

In the final Chapter [6] we will use the tools developed in Chapter [f] to show a classic
result from Grimmett and Marstrand [GM90]. This result states that for any supercrit-

11



ical intensity parameter A we may find a sufficiently thick ‘slab’, which is only infinite
in two dimensions, in which we percolate. We use the Grimmett-Marstrand result to
sharpen our tools further, which will allow us to complete the characterization of large

components.
Note on Terminology Throughout this thesis, “I” refers to original contributions

and perspectives of the author, while “we” is used to include the reader in the mathe-

matical journey and for standard mathematical exposition.

12



Chapter 2

The Random Connection Model

In this chapter we define the Marked Random Connection Model (MRCM). It is as-
sumed that the reader has some basic understanding of the Poisson point process. 1
recommend |[LP17] as a reference for Poisson point process. We will start by reviewing
notation regarding the Poisson point processes, before continuing to with the construc-
tion of the MRCM.

2.1 The Poisson Point Process

Let (X, X) be an arbitrary measurable space. Let N(X) be the space of measures on
X taking values in N. Let N (X) be the associated o-algebra. We will write ppp(X, 1)

for the law of the Poisson point process on some space X with intensity measure u.

Let d > 2 be an integer. Let (M, M, p) be a probability space. We call M the mark
space. Throughout this thesis we will be working on the space X = R% x M. Usually,
on this space, we will be working with a Poisson point process of uniform intensity
A € R>q (with respect to v := Leb®p), in which case will write (by slight abuse of
notation) ny ~ ppp(X, A). We will on occasion drop the subscript to simplify notation.

Now let n ~ ppp(X, A). We will need to modify n by adding additional points. For any
point x € X we define n* := n + J,, where 0, is the Dirac measure. The measure n”
may be interpreted in several ways. First, it may be understood as conditioning on the
existence of a point at z: P[n € - | n({z}) = 1] = P[n* € -]. Note that n({z}) =1 is
an event of probability zero and so the statement is not rigorous as written (see [LP17,
Proposition 9.5]). The second way of understanding the Palm distribution is as a shifted

Poisson point process. Since the Poisson point process has a uniform distribution it

13



is a priori shift-invariant. However, we may choose a random shift, e.g. choosing the
nearest Poisson point to the location x and shifting it to «. The shifted version now
necessarily has a Poisson point at z, and thus has a Palm distribution. This property
is referred to as ‘The Extra Head Problem’ (see [LP17, Chapter 10]). Thus, we may

view o € n° as a ‘typical’ point.

In the same way, for a collection of points z1,...,x, € X, we will define n®1»* asg
N+ <, 0z;- Now the interpretation of the ‘typical’ point is no longer holds, but we
will see_an interpretation of {z1,...,x,} as a possible instance of a cluster in the next
Chapter.

We will also require the factorial measure. For any p € N(X) of the form of u =

> ien Oz, we define the m-th factorial measure

N(m) = Z 5(xi1,‘..,xim)'

(ilz--~7im)€Nm

We will be able to safely assume that all the point processes we encounter are of the
above form (see [LP17, Corollary 3.7]). The m-factorial measure is the collection of all

m-tuples with no repeating points.

2.2 Construction of the MRCM

We are now ready to construct the MRCM. Fix a dimension d > 2 and mark space M
with an associated probability measure p as in the previous section. We will be working
on X := R? x M. This construction follows [DH22] and [Hey+19].

We require a choice of connection function ¢ : R? x M? — [0,1], which governs the
probability that two points in 7 form an edge based on their marks and their relative
position. Given two points z, ¥, € X, where z, = (T, a) and y, = (7, b) with Z,7 € R?
and a,b € M we want z, and y; to form an edge with probability ¥(y — Z;a,b). To
simplify notation we will also write (3 — Z;a,b) = (x4, ys), where we see 1) : X? —
[0, 1].

Since we are constructing an undirected graph we require 1 to be symmetric in R,
meaning that for all a,b € M and all T € R? we have ¢(%;a,b) = ¢(—%;b,a). The
choice of connection function can affect both the microscopic and macroscopic behavior
of the MRCM, and we will give various examples in Section In this thesis we

restrict ourselves to the behavior of the MRCM with connection functions with bounded

14



support.

For any set X we define X[2 as the space of all subsets of cardinality 2. We define the
MRCM via a random element & of N((R? x M)[? x [0, 1]) which we call an independent

edge marking following a convention by [Hey+19]. We sample it as follows.

Let  be a proper point process on X. We may choose an ordering of the vertices
so that n = (zo,z1,22,...), where z; = (T;,m;). This ordering does not effect the
distribution of the resulting MRCM and may thus be chosen freely. Next, we sample a
family of random variables (U; ;); jen, where for each i, j € N we have U; j ~ Unif([0, 1])
independently of everything else. We then define £[n] as a point process on N((R? x
M)P x [0,1]) as

§ =& = A{{zi,z;}, Uiy) [ 1 < j}-

Throughout most of this thesis we work with the independent edge marking &[n] where
n ~ ppp(X,v) and v := ALeb ®p for some A > 0. In this case, we may write £ := [n].
We will use P for the law of £ and use E for the associated expected value. It is
important to note that even though n is a Poisson point process, £ is in general not a
Poisson point process. Each point in (R x M)[? x [0, 1] represents an edge, which are

strongly correlated.

For convenience we may also want to define the independent edge marking for point
processes p defined on R%. In this case &[u] will simply refer to the independent edge
marking of the independent p-marking of u (see [LP17, Definition 5.3]).

2.2.1 Adding points

For some n € N and distinct points z_1, . .., z_, € R4xM we want to define the MRCM
of n*=1»»*-n in such a way that we may remove (or add) any number of z;’s without
changing existing connections. We extend the sequence (Uj ;)i >0 to (Ui ;)i j>—n. We

define the process £¥—1»%-n ag

gy = { (o} Uig) |1 )

As before we may not want to explicitly specify the marks. Thus for Z_q,...,7_, € R?

we define

ET1Ton = 5(5—17m—1)7---7(§—n,m—n)
M )

15



and sample m_1,...m_, ~ p independently. For the purpose of compressing notation

we may occasionally write

51?—1,---790—n — g[nz,h...,x,n] — é-xfl,...,a:,n [771:’1""’1:’”]-

We interpret ¢ as a graph in the following manner. The vertices are given by n =
(xo,x1,22,...). We say two vertices z;, z; € 1 share an edge if U; j < ¢(Z; —Tj;m;, m;)
where w.l.o.g. 7 < j. In this case we write x; ~ x;. Notice that once we have a

realization £, determining the graph is a completely deterministic operation.

It will be notationally convenient to not always distinguish between points x € X and
x € R? with full rigor at all times. We shall point out the differences when they appear
and matter, and whenever reference is made to a point in R¢ it should be assumed
that a mark is sampled for it accordingly. To help with notational efficiency I will on
occasion write the mark of a point as a subscript: z,, = (x,m) € X. It should be noted
that for any event A and z € R? it holds that:

Ple” € A] = /M Ple™m € Alp(dm).

2.2.2 Subsets

We define two variations of £, each of which is a subset of the possible edges. Let

i, 1’ C X be two point processes. We define

Elp, '] = {({z,y}w) €Euup] | zycporz € py e p'} (2.1)

to be the independent edge marking which contains all edges with at least one endpoint
in u. Note that the ordering matters. In particular, it does not contain any of the edges

which have both end points in p’'.

We also define

Elps 1] = {({z,y},u) € Euup] | z,y € por z,y € p'}

the set of edges which have both endpoints in g or both endpoints in p/. This will
be useful notation for considering connected components. Although this definition is
symmetric, we will usually interpret the first component p as random, and the second

component p’ as fixed.

16



2.2.3 Thinnings

An important tool for the MRCM is the ability to precisely partition points based on
certain properties, in such a way that we may view each partition independently. We

can do this via thinnings.

We will require an additional mark on 7 for the required randomness. This can be
achieved by extending the mark space to M := M x [0,1] with probability measure
p @ Unif([0, 1]).

Definition 2.1 (Thinnings). For any function f : X — [0, 1] we define the f-thinning
of n as
fen ={(@,m,u) en|u< flz,m)}

We will functions of the form f: X — [0, 1] thinning functions.

For ' and n? independent copies of 7 notice that by the superposition principle we can
sample f,n' and (1 — f).n? independently, and overlay them to recover a copy of 7 (in
distribution). One must be careful when working with thinnings as 1\ f«n # (1 — f).n,
since the two sides rely on different sources of randomness. Equality does hold in

distribution.

One important family of thinning functions is defined for all locally finite sets A C X
(respectively A C R?%) and is the probability of a point € X connecting to A:

(@) =Pz~ Ain fAU{a}]] =1- JJ(1 - ¥(,2)). (2.2)

zEA

We will also explicitly define a special thinned Poisson point process 74y := 1\ »in.
This is equal in distribution to the set {x € | z » A in {[nUA]}. When talking about
14y We say that the vertices in Ay were ‘killed’ by A. Note that we have wfnUn<A> =7
(by definition), where the union is disjoint. Note further that 74, 4 (1 — ™)., but

nay # (1—¢4).n.

We will differentiate between f.n® and f.nU {x}, where the former allows for x to be
killed, and the latter does not. Further note that if one would want to apply multiple
independent thinnings this can be achieved by repeating the above process, including

further extending the mark space.

For the purpose of compact notation we will not differentiate between points, sets and
vectors in the superscript ot ¢, and it should be assumed that all sets and vectors are

‘unpacked’. As an example, for some z € X, Y = {y1,...,yn} C X, and 7 € X* we

17



write @Y = @yt vnz02k) for some n, k € N.

2.3 Quantities of Interest

For the rest of this thesis we will work only with a connection function with bounded
support in R?. We may, without loss of generality, assume that supp ) C By x M?. To
see why, consider the scenario where supp C Br x M? for some R € R~g. Then the
function z +— ¥(R - x;a,b) has support in the unit ball as desired for all a,b € M. We
are required to modify the Poisson point process in tandem to ensure even scaling. We

choose 7 = {x/R : € n}. This rescaled Poisson point process has intensity RI\.

We will use the notation

Zoi= [[[ wlosa b da.b)

where p®F refers to the k-fold product with itself for some k& € N. We can interpret
AZy as the expected number of neighbors of a typical point. We also define

Z,° := esssup // Y(y; a,b)dyp(dd). (2.3)
a€eM R4 xM
It is immediately apparent that 2y = Zy. We can similarly interpret )\Zz‘zo as the

upper bound on the expected number of neighbors given the mark of the origin.

By a slight abuse of notation, for points = € 1 we will write € A for some A C R? if
x € A x M. Similarly, we will write nN A to be the (random) set {(Z,m) € n | T € A}.

On occasion we may write {NA to mean £[nNA], for the purpose of simplifying notation.

Now that we have defined the MRCM we can define some important objects required to
reason about its behavior. First we say that there exists a path fromx € ntoy € nin a
realization £[n] if we can find a sequence of n distinct points x = 2o, 21, 22, - - « , Zny Znt1 =
y such that for all 7 € [0,n] we have z; ~ z;11. We write { <> y in {[n]} to denote the
event “there exists a path from z to y”. We will use the convention that if z = y then

x <> y holds.

Definition 2.2 (Two-point function). We define the two-point function for z,y € R¢
or z,y € X as

m(z,y) = 7(z,y) == Pl < y in {[n™Y]].

18



We further define the restricted two-point function as

TA(z,y) := Pl < ¢in in {[n"]], (2.4)

i.e. the probability that x reaches a neighbor of y. It can also be interpreted as the
probability that x and y connect via at least one other point in 7. We can see that 7

is symmetric in z and y. It is immediate that 7 > 7y > 7 — 1.

Definition 2.3. For a measurable subset A C X we write {z <+ A in {[n|} if there
exists some y € nN A such that = <> y. Similarly, for A, B C X, we write {4 +» B} in
&[n] if there exist z € N A and y € n N B such that = <> y holds. Note that by our
convention, if there exists some x € nN AN B then A < B holds.

For marks we define a similar connection event. For a measurable subset M C M and
x € n we write {x <> M in £[n]} if there exists some y € n such that x connects to y

and y has its mark in M, including x itself.

If we can find an arbitrarily long path of distinct points from x we write x < oo in
&[n]. Similarly, for some A C X, we write A <> oo if there exists some = € n N A such
that x < oo.

Definition 2.4 (Connected Components). We define the connected component of a

vertex x € 1 as follows.
Clz, &) :={yenlz <y}

We may also consider the connected component of a region A C R?, in which case we
write:
CA ) ={yenlAeyt= | c@9).
reENNA
Note that C(A, £) is in general not a connected component. Finally, it will be convenient
to define C, := C(z,£") as the connected component of the added vertex z € X (or

r € R? in which case the mark is sampled randomly from p).

For all r» € R>o we define the box of radius r to be A, := [—r,7]9 x M C X. Similarly
we define A, = [—7, r]d C R% Forall r € Rgeqo we define the ball of radius 7 to be B,.

The percolation probability is one of the most important quantities across all of sta-
tistical physics. Together with the r-percolation probability it helps characterize many

important behaviors.

Definition 2.5 (Percolation probability). Let r € R>g and m € M. We define the

19



r-percolation probability as

O (A) 1= 07" (\, ) 1= Plom < AZ in €.
We define the percolation probability as

0"(N) :== 0™ (N, ) := Ploy, <+ o0 in £°].

We write () = [, 0™(X)p(dm), and analogously for 6,.()).

Remark 2.6. Note that the choice of reaching the complement of the box A, is somewhat
arbitrary. Any other shape such as the ball B, would work just as well. Indeed the
limit to (A) will be the same regardless, as long as your chosen family of shapes is

sufficiently nice.

Remark 2.7. Tt is straightforward to show that lim, . 6,(\) = 0(X). The r-percolation
probability is monotonically decreasing in r and bounded from below by 0, ensuring
the limit exists. The quantity #(\) can also be interpreted as the probability that the
origin is connected to the unique infinite component, should it exist. Uniqueness of the
infinite component is established in [MR96| for the RCM. For the MRCM it was shown
in [CL24].

Remark 2.8. By coupling &y in A, which is performed in Lemma [£.6] it can be easily

shown that 6(\) is non-strictly increasing in \.

The percolation probability has two distinct phases in A\. The subcritical phase where
6(\) = 0, and the supercritical phase where §(\) > 0.

Definition 2.9 (Critical Parameter). The critical parameter \. is defined as
Ae = Ae(¥) =1nf{X | () > 0}.

A value of X is said to be subcritical if A < A.. We define inf @ = oo, so if ¢ = 0, then

Ae = 00.

The critical parameter is extraordinarily important. It captures the most important
behavior of statistical physics models. This thesis only studies the model below and
above the critical threshold, however the behavior at criticality is of great interest, but

typically difficult to study.

Remark 2.10. It is not clear that A, is non-trivial, meaning that A\, € (0,00). We will

cover this in the Literature Review. It is, however, clear that #(A) > 0 implies the
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existence of an infinite component. It is less clear that A < A, implies E[|C,|] < oo.
Indeed, we will prove this in Chapter 4. At criticality it is expected that 6(A) = 0 and
E[|C,|] = oc.

We can observe similar non-trivial behavior when considering the symmetric simple
random walk (X;);>0 on Z. It is well know that X is recurrent, meaning that no matter
where it starts it will return to 0 € Z in finite time with probability 1. However, the

expected return time is oc.
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Chapter 3

Literature Review

We start with a brief survey of the various models that are covered by the Marked
Random Connection Model (MRCM). This will hopefully aid with the intuition for

later sections and chapters.

3.1 Examples of the MRCM

The MRCM is a very general model than can capture a large variety of different be-
haviors. I will present some instances of the MRCM which have been are of interest.

These are useful to keep in mind as we proceed.

We will divide this exposition of models into hard and soft. We call a model hard if
connections are purely determined by the relative location of points and their marks,
but no other randomness. If extra randomness is required to determine the edges, we
call the model soft.

3.1.1 Hard Models

First, let us mention the simplest model, which is the Poisson Boolean model of constant
radius, also referred to as the Gilbert graph. We let | - | denote the standard L2-norm
on R?. It can be understood to have the connection function ¥(x) = 1{|z|o < 1}. This

model is by far the best understood.

The first generalization of the Gilbert graph was allowing the radii to vary. In this case
we choose M = R>( and along with some distribution p. We write marks as subscripts.

The connection function is then (z,,ys) = 1{|z — y|2 < r + s}. For this model to
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be non-trivial it is required that E[R? < oo, where R ~ p, although it is common to

consider stronger moment assumptions, or even bounded radii. See [MR96].

Grain models are the most general of the hard models. The mark space is the space
of all compact sets containing the origin. If K, L are compact subsets of R%, then we
write ¥(zx,yr) = H{z+ KNy + L # @}. See |Ziel6] for an exploration of this model.

AB percolation is a modification of any of the above models. In AB percolation we
consider the mark space M = {A, B} (in addition to any other marks) and only allow
connections between points of different marks. See [IY12] [Penl4]. Of course, AB

percolation can also be performed on soft models.

3.1.2 Soft Models

The tools required for tackling the soft models have only been developed more recently.
As mentioned before, the first of these models to be studied was the RCM in [Pen91].

One instance of the RCM of interest is first sampling a hard model, and then performing
Bernoulli bond percolation on the resulting random graph, this was studied by [Pen22]
and [Lic+23]. This can also be interpreted as using the connection function ¥ (z,y) =

pl{|y — x| < 1}, for some parameter p € (0,1). Note that this principle can be applied

bond

to any model. Moreover, we can find a critical value p;

analogous to our critical
Ae- It was shown in [FPR11] that this critical value is strictly smaller than the critical
value for site percolation performed on the RCM, i.e. pSit® > pbond  This is consistent

with previous results on graphs of bounded degree [GS9§].

One particular model of interest is the weight-dependent RCM (introduced in [Gra+22])
which is usually written with mark space M = [0,1]. This model depends on a non-
increasing integrable profile function p : R>o — [0, 1] and a kernel g : (0,1) x (0,1) —
R>o. Then v (z¢,ys) = p(g(t,s)|z — y|?). This model is of particular interest when
studying long range models, i.e. models where the connection distance has a polynomial
tail, and hence long range connections become important to the dynamics. See also
[Gra+19].

3.2 Overview of previous results

We start by going through fundamental results necessary for understanding any statis-
tical physics model. We start with uniqueness and sharpness. We will then continue
to recent work which is more directly relevant to this thesis. Finally, we will state

preliminary lemmas that are required throughout the rest of this thesis.
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This thesis builds on recent work in both discrete and continuum percolation. We first
go through historical advances in continuum models. Then, we look at some results
specific to large components. We then look at some recent results for the MRCM.

Finally, we cover the results in discrete models which are of importance to us.

3.2.1 Historical results for Continuum Models

As mentioned in Chapter I} Penrose introduced the RCM [Pen91] in 1991. In this
first paper Penrose shows that the critical intensity in non-trivial. Furthermore, and
importantly for our purposes, he derives a formula for the probability that an added
point connects to a cluster of cardinality k. I will generalize this to the MRCM and
present a new proof in Chapter

One foundational text for continuum models is Meester and Roy’s Continuum Per-
colation [MR96]. Meester and Roy largely work with the Poisson Boolean model (of
varying radius), proving standard results. For our purposes we are interested in their
work on the RCM. They show the agreement of two separate definitions of criticality,
one given by the percolation probability §(\) (aligning with our Definition and the
other given by the expected size of the component at the origin E[|C,|]. They also show
the uniqueness of the infinite component when it exists. Their proof makes use of the

‘trifurcation’ argument introduced by Burton and Keane in [BK89].

Uniqueness of the infinite component for the RCM was first shown by Meester and Roy
(see IMR96]) using the Burton-Keane approach [BK89], where the key idea is the use of
‘trifurcation-points’. The approach of ‘trifurcation-points’ also works in the continuum.
For the MRCM uniqueness was shown in [CL24], which adapts ideas from [AKN87], in

particular deletion stability, to prove uniqueness.

3.2.2 Large components

Another important text is Penrose’s Random Geometric Graphs |Pen03|. Penrose shows
for the Poisson Boolean model of constant radius, i.e. (z) = 1{|x| < 1}, that the
largest component in a box A; is of the order of the log(¢) in the subcritical case. In
the supercritical case the largest component in A; consists of a positive fraction 6(\)

of all points in the box. We will prove these in the more general MRCM.

In the case where 1 is radially symmetric and decreasing Penrose proved in |[Penl6|
that full connectivity (in a box) is governed by the probability of having isolated ver-
tices in the limit where the number of points goes to infinity, but the radius of the

connection function goes to zero. Furthermore, the number of isolated vertices can
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itself be approximated by a Poisson random variable.

Penrose showed in [Pen22] that the supercritical (A > A.) largest component of the as
a fraction of all points converges to #(\) in probability for d = 2 for ¢ decreasing with
bounded support. In the case where ¢(x) = p1{|z| < 1} for some p € (0, 1] Lichev,
Lodewijks, Mitsche and Schapira show in [Lic+23| that the largest component in the
supercritical SRGG converges to (\) almost surely as a fraction of all points. They
further demonstrate that the critical parameters A.(p) and p.(A) are inverses of the

other.

3.2.3 Recent advances for the (M)RCM

One open question is if the infinite cluster exists at criticality. This property is equiv-
alent to 6(\) being continuous at )\Cﬂ For discrete models such as Bernoulli bond
percolation on Z? this was shown by Harris in 1960 [Har60|, when taken together with
a later result by Kesten in 1980 [Kes80|. For a general survey of planar percolation see
[Gri99]. In high dimensions, namely d > 19 the result was shown by Hara and Slade in
1994 using the Lace Expansion [HS94] (in particular they show ”mean-field behavior”).

Last and Ziesche show that the two-point function satisfies the Ornstein-Zernike equa-
tion |[LZ17). Later, Heydenreich van der Hofstad, Last and Matzke develop the lace
expansion for the two point function [Hey+19|, which makes this relationship explicit,

this allows them to derive the triangle-condition (in sufficiently high dimensions). This

paper is important for our purposes due to the [Stopping Set lemmal which we will state

and prove later.

In general all models are least well understood at or near the critical value. One way
we try to understand the behavior of models near the critical value is with critical
exponents, each of which describe a certain aspect of the model behavior. It is conjec-
tured that the critical exponents are universal, meaning that they are independent of

the exact details / local rules of the model.

Dickson and Heydenreich prove in [DH22|, under some mild technical assumptions,
that the ‘triangle condition’ holds in sufficiently high dimensions. Using the triangle
condition [CD24] show the existence (and calculate the values of) certain critical expo-
nents. For the RCM [DH24| develop an expansion of the critical value A; in the limit
as d — oo. Relevant to this paper, |[CD24] show the ‘mean-field lower bound’ half of

sharpness.

! As we will see it is easy to prove right-continuity, the difficulty comes in showing 6 is left-continuous.
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3.2.4 Recent Advances in Discrete Models

More recently lace expansion result has since been generalized to graphs beyond Z¢
such as [Ben+99| for Cayley graphs of non-amenable groups and |[Hey-+19] for the
Random Connection Model (in high dimensions). For low dimensions it was shown by
Duminil-Copin, Sidoravicius and Tassion in [DST16] that there is no infinite cluster at
criticality for ‘slabs’ of the form Z2 x {0,..., k}?2.

The property sharpness originally referred to the coincidence of different definitions of
of criticality, one defined via the probability of an infinite path (as we have done in
Deﬁnition, and the other via the expected cluster size. This fact was independently
discovered by Aizenman and Barsky [AB87| and Menshikov [Men86]. Menshikov and

Sidorenko later showed the same result for Poisson models [MS8§].

An important modern result on sharpness is [DT16] by Duminil-Copin and Tassion,
which greatly simplifies (and generalizes) the proof. In particular, [DT16] shows ‘ex-
ponential decay’ of the t-percolation probability (in ¢) in the subcritical case, and a
mean-field lower bound for the percolation probability in the supercritical case. For
the rest of this thesis ‘sharpness’ will refer to this pair of bounds on the percolation

probability.

This proof was adopted by Sebastian Ziesche to show sharpness for the germ model
in [Ziel6]. In this thesis I generalize this proof to the more general Marked Random
Connection Model using methods from |[Hey+19]. These new results will allow us to
generalize results on large components from [Pen03], [Pen22] and [Lic+23] to the RCM

and to dimensions d > 2.

In [EST24] Easo, Severo and Tassion invert the classic Peirels argument to show p. < 1
is equivalent to at most exponential growth in the number of cutsets (sets of edges

separating the origin from infinity) in the size of the cutest.

In Chapter [5] we will state and prove that large components in the supercritical case
make up a 6() proportion of all points. The key tools required to work in the supercrit-
ical regime are uniqueness statements which allow us to ensure that various crossings
of annuli are indeed the same component. We will adapt a lot of the work of [CMT23].
A fundamental result is an upper bound on the two-arm event. The two-arm event
occurs when there are two disjoint paths from the origin to the region outside a ball

centered at the origin.
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3.3 Fundamental Tools

In the following subsections we will be stating fundamental results required to work
with the MRCM. These are the Mecke formula, Russo’s formula and the Stopping set
Lemma. I will also provide a proof of the stopping set lemma, since we will use not

only the statement itself, but aspects of its proof in later sections.

3.3.1 Mecke formula

For this and all further sections we shall assume that our Poisson point process 1 has
density A Leb ®p in X, for some constant A > 0. In particular, n is uniform on Euclidean

space.

A key tool which makes working with the MRCM tractable is the Mecke formula. In
words, the Mecke formula allows us to convert the expectation of a sum over Poisson
points into an integral with respect to a single point. We will first write out the gen-
eralized multivariate version where we sum over m-tuples, and then we will separately

consider the univariate version, which we will be using most of the time.
Let us write v := A Leb ®p.

Theorem 3.1 (Multivariate Mecke). Let &, = &[n] be @ MRCM. Let k > 1. Given a
nice function f: N((X x M) x [0,1]) x X¥ = Rs¢. Then

B Y fed| = [ Blfe o,
Fen X
where v®F is the k-times product of the measure v, and T = (T1y...,xp).

Remark 3.2. Depending on our needs we may not want to explicitly integrate over
possible marks in the expected value. By abuse of notation we will not, in general,

differentiate between various E.

Rd*

/ E[f (€71, #)]dv®* (d) = AF / E[f(€77, 7)|dz.
Xk

On the LHS we explicitly integrate over the marks while on the RHS the integral over

the marks is carried out by the expected value.

In the special case where k = 1 we recover the univariate Mecke formula. As we will

use this form in the majority of cases it is worth stating separately.
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Theorem 3.3 (Univariate Mecke). Let £, be a MRCM. Given a nice function f :
N((X x M) x [0,1]) x X = Rsqg. Then

E > f&x)| =X [ E[f(& a)v(de).
TEn /X

If the sum is over a Palm process, the extra points are added on the RHS. For the

univariate Mecke equation this results in:

B | ()| = BIAE. 2]+ [ Bl n)v(ao)

xen? X

Proof of [Multivariate Mecked By [LP17, Theorem 4.4], we know the Multivariate Mecke

equation holds for the (marked) Poisson point process. We write E, to refer to the

expected value with respect to the point process without the extra randomness from
the MRCM. Similarly, we write Ey,; to refer to the expected value with respect to the
MRCM. To extend to the MRCM we have to incorporate the extra randomness coming
from £. Then

E| > &3] =Eu, |Eqn | D F(&T)
zen(k)

zen(k)

(Mecke for ppp) = E(y,)) [)\k /Xk E, [f(ﬁf, :Z")} V®k(df)]
(Fubini) = AF /X kIE[f(gf, )=k (d7).

One needs to be careful when separating the expected value E into Ey,,[E,,. The labels
1 need to be assigned to the Poisson points consistently, e.g. by the distance from the

origin. |
Going forward we will just write ‘dz” when integrating over X for brevity.

3.3.2 Margulis-Russo Formula

This formula is standard on lattice models (see e.g. [Gri99]), and known for the Poisson
point process |[LP17, Chapter 19]. It was expanded to the RCM in [LZ17, Theorem
3.2]. Their proof can be adapted to the MRCM mutatis mutandis.

28



Let f: N(XP x [0,1]) = R be a function. We say the function f lives on a Borel set
A C RYif f(€lpNA]) = f(£[n]) almost surely.

Theorem 3.4 (Margulis-Russo Formula). Assume f lives on some bounded A and
there exists some \g > 0 such that E[f(&y,)] < 0o. For every A < \g we have

a T

()= [ E[f(€3) = f(&n)]dz.

oA A

The Margulis-Russo formula is a fundamental result, which will allow us to construct a
differential inequality, and more generally unlocks the use of calculus for studying the
MRCM.

3.3.3 Stopping Set Lemma

The Stopping Set Lemma (introduced in [Hey+19]) is a central tool that we will use
liberally throughout this thesis. It will allow us to disintegrate along components of
the MRCM. Specifically, it allows us to work with P[ - | C = C] for some random

component C and an admissible deterministic point set C ]

Definition 3.5 (Admissible Set). We call a finite set C' C X admissible if the proba-
bility that C' is connected in £[C] is strictly positive. Let G¢ be the set of all possible
graphs on the vertices C such that the graph is connected. Then

g(C) :=P[C is connected in {[C]] = Y [[ ¢y [[ Q-¢@y) (31

GeGe zyeE(G) zyZE(G)
where zy represents an edge with endpoints x and y.

The Stopping Set Lemma allows us to work with the modified point process ¢, (de-
fined in Section instead of £*[n” \ C;]. Note that n* \ C, is not a Poisson point

process in general.

Lemma 3.6 (Stopping Set lemma). Let z € R?. Then

PE*[n" \ Ce] € - | Co = C] = P[E[niey] € 7] for P[C, € - ] a.e. C.

Let us first note that n* \ C, is not a Poisson point process.

Due to the centrality of this lemma and for completeness we will give the proof of

2Note that C = C may be an event of measure zero. However, conditioning on this event can be
made rigorous using the disintegration theorem. See for instance [Pac7§|.
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[Hey+19, Lemma 3.3] here. In particular, this proof includes details which will be of
importance in Chapter |5} The authors of [Hey+19] note that this proof is similar to
[MPS97, Proposition 2].

Proof. We write £*[C,] to refer to C, with the edges. Notice that {*[C;] can be inter-
preted as a rooted tree with x as the root. Let g = {x}. We now iteratively construct
&*[Cy]. For n € N let ), be the set of points in C, with graph distance at most n from
the root x. Let Cp = np = {x}. We claim the following holds

E[f(éx[n \ 7771}7770) ey nn)]

(3.2)
- / ELF o) Ao s ADIEI010, - 7) € d(Ap, .., An)],

for all measurable f with suitable domain.

To continue we consider a modification of the MRCM £. Let u C X be a point processes.
Let A C X be a locally finite set. Following the conventions from Section [2.2] write
&, A] for the set of edges with at least one endpoint in p (see (2.1])). We assert that
for n € N:

E[f(E° [0\ s 0 \ Mn—1], 705 - - -5 1n)]

3.3
:/]E[f(f[n<Anl>,An\An1],A0,...,An)]P[(n1,...,T}n) S d(Al,...,An)}, ( )

for all non-negative measurable f with suitable domain. Note that this is a stronger
assertion than (3.2), because &[n4, _y] € &Mia, 1), An \ An—1].

This is equivalent to stating that §%[n \ 1,70 \ Ma—1] is equal to {[nia, ,y, An \ An-1]
in distribution given (ng,...,n,) = (4o, ..., Apn).

We prove as follows. Let us define the following edge marking. Let h : RY — [0, 00)
be measurable and let p and i/ be two independent Poisson point process with their
intensity given by h. Let A C R? be a locally finite set. We define the following
independent edge marking ¢ := £[u U A]. Let p? be the set of points in p directly
connecting to A in £. Observe that for each v € u the event that v ~ A is independent

of all other connections in u. In particular, p? 4 YA (we remind the reader of

Definition [2.1). Moreover,

(€l 1Y, 1) L (€Ll i) ik, (3.4)

This statement follows from marking and thinning theorems of Poisson point processes
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Figure 3-1: Two demonstrations of the iterative construction of a component. Vertices
are colored based on their graph distance to the origin (in black).

(see [LP17, Theorems 5.1 & 5.6]). It can also be seen directly by noticing that instead
of using the randomness from the Uj; ;’s from £[-] we are instead using the randomness

from the thinning. Furthermore, ,u’< A) and 12/ are independent.

We now apply (3.4) iteratively starting with A = Ay = {z} and p = n. We construct
A; iteratively. First, let Ay be the union of {x} and all neighbors of 49 = {z}. By
construction, it holds that ¥¥n 4 Ap \ Ap. This gives (3.3) for n = 1:

ELF (€% \ m,m \ nols mo, m)] = /E[f(ﬁ[mx),Al \ {z}], {z}, A)]P[m € dA4].
Note that 11 \ no 4 ix}n. Now suppose is true for n and let Ay,..., A, C X be

admissible locally finite sets. We apply (3.4) with p = 74, ) and A = A, \ Ap_1,
conditional on (n1,...,m,) = (A1,..., Ay).

To see this, first note that the points directly connecting to A, \ A,_1, but not to any

previous points, are exactly 7,41 \ 7,. In symbols, we find that néfn\i’;_l = Nn+1 \ Tn
given (n1,...,nn) = (41,...,A,), by definition.
Given (n1,...,mn) = (A1,..., A,) we find
d
EM\ Mt 1, 1 \ M) = L0010 A\ A1) V2T A, 1) (3.5)
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We can see that (14,_1))(4,\An_1) 4 7(A,)- This follows explicitly from:

e (e O E N I | I [T 1-v|=1-9"

z€AL_1 zEAN\An—1

Similarly, we find that, ¢f "\A"‘lm An_1) = Ant1 \ Ay, And so (3.3) follows from (3.5).

Furthermore, this same argument shows that, conditionally on (7x)k<n, 7 \ 7n+1 and
Mn+1 \ M are independent Poisson point processes with intensity functions A(1 — ™)
and A\ (1 —¢p™-1), respectively. The intuition is that a Poisson point not connected
to M, can not be in 7,,1. If a Poisson point is connected to 7, it has to additionally

not be connected to 7,—_1, as those points have already been sampled.

This procedure allows us to iteratively sample components C, by starting with ny = {x}

and n_; = @, and sampling 7,41 \ 7, as an independent Poisson point process with
intensity Ay (1 — Qpnn_l)ﬂ

By induction, integrability of ¥ and
PV <Y (),
WENR\Nn—1

it follows that all 7, are finite almost surely. Equation (3.2)) shows in particular that

E[f (€ [\ nnlsmn)] = /E[f(f[mcn1>],Cn)]P[§z[Cz] € dcy, (3.6)

where C, refers to all vertices with graph distance at most n from x in C,. Let 1, :=
Un 7, denote the vertex set C,,. For any bounded Borel set, we have that |n.,NB| = |n,N
B for sufficiently large n. Note that £¥[n\n,] \ %7\ Nso) as n — oo. Therefore, if f is
a bounded function depending only on the values of £*[n\ 7, and 7, on some bounded
and measurable set, then the left-hand side of will converge to E[f(£*[17\ Mo )s oo)]

as n — oo.

Similarly, the integrand of the right-hand side converges. In particular,

E[F (€711 \ o], 7o0)] = / E[f([1c)): O)|Plieo € AC),

for non-negative f as described in the previous paragraph. This can then be extended

to general f by a monotone class argument. |

31t follows from our definition that ? = 0.
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Chapter 4
The Subcritical Regime

The goal of this chapter is to prove statements about large components. The subcritical
regime in many ways easier to understand than the supercritical regime. The key fact
is that long connections become exponentially unlikely. To do so we will consider the

largest component in an observation window A;.

4.1 Assumptions and Results

We borrow the following language from [CD24]. We start with the following assump-
tion. We first define, for a,b € M,

D(a,b) := Y(z;a,b)de,
Rd

and for k£ > 1

k
D9ab) = [ T Dle1)p™ e

=1

where ¢y = a and ¢ = b. Let B C M be measurable. We know by the Mecke equation
that A [ D(a,b)p(db) is the expected number of direct connections made from (o, a) to
some point with a mark in B. Similarly, ¥ [, D®) (a,b)p(db) is the expected number
of paths of length £ that start at (0,a) and end with some mark in B. We will require

the following assumption:

ess sup sup ess inf D®) (a, b) > 0. (A1)
aeM k>1 beM
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In words (A1) says that there exists some mark that connects to every other mark
in at most k steps for some k. This immediately implies that almost every mark can
connect to almost every other mark in at most 2k steps. In particular, it ensures that

for p-almost all marks m and any measurable subset M C M such that p(M) > 0 we
have that Po,, +» M] > 0 (in the sense of Definition [2.3).

Assumption (A1) is not required for all results and in particular the main theorem
would still hold without it. The assumption ensures that our model can not be trivially

decomposed into two independent MRCMs. It will be explicitly mentioned whenever

(A 1)) is required.

It is worth remarking that (A1f) does exclude some models which might be of interest.
An example could be given by ¥ (x;a,b) = min(a,b)f(z), where the mark space M =
[0,1], p is given by uniform distribution and f is a symmetric function of bounded

support.

Definition 4.1 (Largest Component). Let B C X. The size of the largest component
in €, N B, as measured by the number of vertices is denoted as Li(B,&y). When & are
clear from the context, we will simply write Li(B). In case of a tie the reader may

choose any rule to break ties such as by lexicographic ordering.

To be able to state the theorem we need to define the inverse correlation length. The
correlation length is a general concept throughout statistical physics and can be thought
of as the scale required to observe the effects of subcriticality (respectively supercriti-
cality). In our case it means that your observation window needs to be at least at the
scale of the correlation length to observe the exponential decay. This notion will be

made more rigorous in the proof of the main theorem of this chapter.

Definition 4.2 (Inverse Correlation length). Let m € M. The m-inverse correlation
length for A € Ry is defined as

- 1 .
(") = Jim ~2 log BlIC,, | = in &7 (c1)
. 1 . com
:Jl_%lo—alog]P’[nS |Co,,| < 00 in &3] (C2)

It is not immediately obvious that the limit (C1)) exists or is equal to (C2). We also
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define the following variations

() = Tim " logP[C,| = n in &]. (Cc3)
¢min()) = essinf ("()), (C4)

We remark that P[|Co| = n in €] = [, P[|Co,,| = n in £ ]p(dm).

We will prove that ¢((\) = ¢™®(\). Assuming (AT]), we will further prove that for
p-almost-all m € M is holds that ("(\) = ((A\). Note that if (A1]) does not hold it
need not be true. The simplest counterexample is a two mark system where the marks

have no interaction.

Lemma 4.3 (¢ is well defined). The limit (C1) exists and is equal to (C2). The
limit (C3|) exists and is equal to (C4)). Furthermore, the inverse correlation length is
positive, decreasing and continuous for all A < A.. As A — 0 we have ("(\) — oo.

Assuming (A1) it further holds that for almost all m € M: (™ (X) is equal to ((\) for
all A < Ac.

To prove Lemma4.3] we will require sharpness, and more generally the results of Section
The (inverse) correlation length is a key tool in the study of percolation theory.

We can now state the main theorem of this chapter.

Theorem 4.4 (Main Theorem: Large Components). Consider the MRCM with con-

nection function ¢ having bounded support and subcritical intensity A € (0, ;). Then

L A
L& nAs)| — d - (X )71 in probability,
log 2s
as s — oo, where Ly is the largest component.

We can interpret the statement of Theorem [4.4] as saying that the largest component
in a box of volume V has on the order of log V' points, where the right factor is exactly

the correlation length ¢ 1.

To warm up we start with an auxiliary result.

4.2 Auxiliary Result

While the following result is not required to prove the main theorem, it might still be

of interest to the reader.
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Figure 4-1: The MRCM model in the subcritical regime. Same model as in Figure
with a smaller intensity A and a larger observation window. The largest component is
highlighted.

Lemma 4.5. The percolation probability 6™ (\) is right-continuous in A for every m €
M.

It follows immediately from the above lemma that #(\) is also right-continuous.

Proof. Let € > (0. We have the following estimate for all N € N:

N
L=0"(\) =) PG, | =iin &) > > P[|Co,, | =i in £5].
i>1 i=1
We choose N, such that P[|C,,,| < Nyy| > 1 —60"(\) — /2. Every term in the above
sum is differentiable (and therefore continuous) in A (see [CL24], or [Pen91] for the
RCM). Hence, we may choose some § > 0 so that for every X € (A, A + ) we find

Ny, N,
> PllCo, | =i in €8] = D P[IC,,| =i in &M — /2> 1—-67(N) — <.
=1 =1
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By our definition of N,,,
Np,
1—0™(X) =P[|C,,,| <00 in &7 =Y P[Co,| =i in &) >1—0™()) —e.
=1

It follows that 6™ (X) < ™ (X) < 0™(\)+e. Thus, 0™ () is right-continuous everywhere
in A |

For A < A, proving left-continuity is immediate as 6™ (\) = 0. Proving left-continuity
at the critical point A, is an open question in general. It is equivalent to the absence of
the infinite cluster at criticality, which has been solved for certain models in dimensions
2 and dimensions 11 and above. For the MRCM this result has been shown to hold in
sufficiently high dimensions [DH22].

Lemma 4.6. Let m € M and A\g > A.. Then 0™ 1is left-continuous at Ag.

The following proof is adopted from |[Dum18|.

Proof. We know by |[CL24] that the infinite component for the MRCM is unique when
it exists. Let A\g > A.. We want to show that

Jim 67(3) = 0" ().

Now we may create a coupling in A by sampling our Poisson point process in the space
X x R>p, with intensity measure Leb®’ xp x Leb®20. Then by first restricting to [0, ]
and then projecting out the final dimension we recover a MRCM with intensity A. Now

for A > Ac I will write C3° to refer to the unique infinite component.

Now assume that o, ~ CS, but o, » C5° for all A € (A, Ag). For this to be true there
would need to exist a Poisson point with value second mark value exactly Ag, which

has probability 0. Hence,
0™ (No) — lim 0™(\) < P[Fz € n: 7%20(2) = Ag] = 0.
(Ao) A;{I/\lo (M) [Hz€n (2) o] =0

Since 6 is increasing we find 6™ (A\o) = limy »y, 0™ (). [

4.3 Sharpness

Our approach to proving sharpness relies on the method developed in [DT16] for lattice

percolation. Similarly to that paper, we define a functional ¢, that takes a thinning
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function f: X — [0,1] and marks a,b € M as an input and returns a real number:

ex(fia,b) = A/ (1= f(xp))Ploa > xp in £[fan U {0a, 2p}]|d. (4.1)

Rd

We can be interpret [, ¢©x(f;a,b)p(db) as the expected number of points in 7\ f.n that
can be reached from the origin with mark a only using points in f.n. Indeed, by the

Mecke equation, and any measurable subset M C M:

/MeoA(f;a,b)p(db):E S 10w 6 2 in €[farU{oa}]}] -

zen\ fun
aM(z)eM

Let T be the set of thinning functions with compact support. We can now define a

new critical parameter

Ae 1= sup {)\ > 0 | esssup inf / ox(f;a,b)p(db) < 1} .
aeM FET Jm

Note that for the RCM it suffices to assume that there exists an f € T such that the

above quantity is strictly less than 1.

The choice esssup,epinfrer [y a(f;a,b)p(db) is not immediate. To make sense of it
notice that we may view ) (f;a,b) as the kernel for an operator. For any measurable

function h : M — R write:

/ ox(f: a,)(b)p(db)
M

Now esssupgeng [1; €A (f3a,b)p(db) = [[®f]|1,00. The 1, 00-norm is most convenient for
our purposes. For more reading on using operators to deal with marks see |[CD24]. We

will not (explicitly) require operators for the rest of the thesis.

For any f € T define the following quantity

BL(f) = esssup [ on(fim.b)p(da) (4.2)
aeM M

Note that A < A, is equivalent to saying that there exists some f € 7 such that
@i’oo( f) < 1. Recall the definition of A. (Definition .

Theorem 4.7 (Sharpness). For any d > 1 it holds that Ae = A\ and
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(I) For all A < A, there exists some ¢ > 0 such that for all t

esssup 0" (N, ¥) < e .
meM

(II) For all A > A\, we have

A— A
esssup 0" (N, ) > .
meM A

Remark 4.8. In the case of the Random Connection Model (i.e. if |[M| = 1) we get the

following stronger bound:
A—Ac

O(\) > 3

Remark 4.9. We note that this theorem implies the original definition of sharpness, i.e.
that A. = A\Z, where A\Z := sup{\ | E[|C,|] < oo}. It is immediate that A\, > A\Z, as an
infinite path with positive probability implies that the expected value of the size of the
component of the origin is infinite. The other direction requires a bit more work. By
Lemma we know that P[|C,| > n] decays exponentially in n. Thus,

E[Col] = Y P[ICo| = n] < CY " exp(—én) < co.

n>1 n>1

Remark 4.10. Recall the definition of Zy from equation (2.3)). By using the definition

of ¢y we can recover a standard bound. By choosing f = 0 we find

1
ess sup/ ox(f;a,b)p(db) = AZ)°  and hence  A. > —
M

aeM o ng

This shows that for any ¢ with Z7® € (0,00) we have A; > 0. If in addition we have
Ae < 00, as is the case for d > 2 (see [CD24, Lemma 2.2]), then the MRCM has a

non-trivial phase transition.

We will need the following proposition from [Pen91] (see also [MR96| Proposition 6.2])
which was only proven for the RCM. It was also shown in the proof of |[CD24) Lemma
3.4] for the MRCM.

Recall the definition of 14 from equation ([2.2).

Proposition 4.11. Let m € M and n € Z>1. Let p]* be the probability that P[|C,,,| =

n]. Let g(z1,...,zx) be the probability that z1,...,z, are in one connected component
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as defined in equation (3.1). Then,

An ) ~
Pny1=—7 | 9(om,@1,...,25)exp (—A/Xw"’”’””(y)dy> dz.

TL' Xn
Proof. Notice that we can write

Pyl = E{ Z 1{(om,z1,...,xy,) connected}
{z1,...,xn}Cn

1{{om,x1,. ...z} »n\{x1,..., 2} }],

where the sum over 1 explicitly does not contain o. The above equation holds because
in the event |C,,,| = n+1 there is exactly one such set {z1, ..., z,} satisfying the stated
events. Otherwise, if |C,,, | # n + 1, such a set does not exist. This corresponds to n!
ordered tuples in the factorial measure. Hence, by the Mecke equation

)\n

Pn+1 = F g(0m7$1, ey .’En)]P)[{Om,[EL e 71'77,} et W]df7
. XTL

To determine if {0, z1,...,zy} = 1, notice that it is equivalent to asking if |w$m’f77] =

Om,

0. We know by standard Poisson point process theory that |4y "n| has a Poisson
distribution with intensity A fX Y% (3))dy. Thus, the proposition holds. |

Remark 4.12. By symmetry, we can also write

Pp1 = A" {71 < - <ZTptg(om,x1,...,2Tpn)€Xp <—)\/ @Z)Om’f(y)dy> dz,
X X

where < refers to the lexicographic ordering (although any strict ordering of R? would

work).
Before we can state the next lemma we need the following definition.

Definition 4.13. For z € R? let S, : N (X x M)® x [0,1]) — N ((X x M) x [0,1])
be the shift operator which sends each edge in £ to the same edge translated by z.

We call a function T of the form T : X2 x N((X x M)IZ x [0,1]) — [0,00) a mass
transport map. We call a mass transport map T shift invariant if E[T(z,y;£%Y)] =
E[T(x — z,y — 2; S_,£%Y)] holds for all z,y € X and z € RY.

The following is an adaptation of the mass transport principle.
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Lemma 4.14 (Mass Transport). Let T : X2 x N((X x M)[Z x [0,1]) — [0, 00) be a shift

tvariant integrable mass transport map. Then,

E[Y T(o,2:€)] =E[)_ T(,0;€°)]

ren° ren°

The intuition for the mass transport principle is to view T'(o,z) as a function which
‘sends mass’ from o to x. Therefore, the principle states that all the mass sent out

from o must in expectation be equal to all the mass received by o from other points.

For a subset M C M we use the notation oj; to indicate that we sample the mark of
ops uniformly over M relative to p, this is equivalent to ﬁ f a -p(dm). We further
introduce the notation X, to denote R% x M for a subset M C M.

Proof. We start by using the Mecke equation and translation invariance as follows

E

S T(o,:c;&0>] [ [ B0 € p(m)da + BT (0,0:€7)

ren°

=A /X /M E[T(—mm’ O[5 S—szxm’ol)]p(dm)dxl + E[T(o, 0; go)]_

Note that we have the extra E[T'(o, 0;£°)] term since we are using Mecke on 7°.

By substituting z; — —x;, Fubini (for swapping the integral over the marks), and

swapping the names of the marks, we find that

B| Y To.w¢)| = A [ [ BiT(eom o) lp(dm)da + BT (0. 056)
zene X JM
=FE Z T(x,o0; fo)] ,
xen°
where in the final line we use the |Univariate Mecke| in the opposite direction. |

We can use the [Mass Transport| principle to ‘switch marks’ in the following way. Going

forward the & will be dropped from the T notation for compactness.
Corollary 4.15. Let A, B C M be measurable with p(A) > 0 and p(B) > 0. Let

41



k € Z>1. Then

p(B) EllCop NXal [ |Cop| = K]

P[|C,,| = k,Co,NXp # @] =
H A‘ A B?é ] p(A)EHCOAﬂXB| | ‘C0A|:k7COAmXB#®]

PlICop| = K-

Proof. We let A, B and k be as above. We now drop the independent edge marking &

from the notation of the transport map T for compactness. We choose

T(xm,y1) = 1{m € A}1{l € B}1{|Cs,,| = k}1{C.,, N Xp # T} 1{zm, < yi}.
Then, by the definition of conditional expectation,

E =E [1{o € Xa}1{|Co| = k}1{C,NXp £ &} Y 1{o+ z}

ZL‘GHDQXB

Z T(o,x)

xeN°
= p(A) Pl|Cou| = k,Coy NXp # @] E[|Coy NXp| | |Cos| = k,Coy NXp # 2.

We now perform a similar calculation for E |3~ . T'(z, 0)] .

E

Z T(z,0)

TeEN°

=K

1{o € Xp} Z 1{z € X4 }1{|Cs| = k}1{o <> z}1{C, N Xp # @}]

zen°

= p(B) P[|Cop| = K] E[|Cop N Xa| | 1{|Cop| = k}],

where we use the fact that if o and « are connected then C, = C,. It follows immediately
that C,, N Xp can never be empty, since it always contains at least the origin. By

rearranging the result holds. |

Remark 4.16. Other results can also be recovered from the [Mass Transport| by using

different choices of T'(xy,,y;). We again assume p(A) > 0 and p(B) > 0. If we choose
T(xm,y1) =1{m € A,l € B, xp, <> y;} we find that

_niB),

EHCOA mXBH ,O(A)

[ICop NXal].

We can extend this example through additional conditions: T'(zy,,y;) = 1{m € A,l €
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B,z < y1,|Cy,,| = k}. We now find that

_ P(B)E[|Cop N Xa| [ |Cop| = F]

Pl|C,. | =k
[Conl = K] = AV B, , 1 X5l [1Cou = H

Pl|Cop| = kI.

As a final example, if we choose T(xy,,y;) = 1{m € A,l € B,|C,, | = k}%, we
find that

p(B) ‘COB XA‘
PlCo.| = k,C, X #@ =——E [1{|Co,| =k} =—""—],
H A’ A B ] (A) {‘ B‘ }’COBQX ‘

where we use the convention that % =0.

Remark 4.17. In all the above examples (including Corollary [4.15)) one may replace all
‘= k’ with ‘> k’.

4.4 Proof of Sharpness

As stated we take the idea of using ¢ from [DT16]. This was first done in the continuum
by [Ziel6| for a large class of bounded hard models. We extend this to bounded soft

models.

We will show items and for 5\0. Then, the fact that S\C = ) follows immediately
by Remark We will make use of the [Stopping Set lemmal Let us write

07" (A) = Plog < Ay in €7 [°"]],

for the t-percolation probability started from mark m € M.

4.4.1 Ttem|[I

Assume A < .. Then, by definition, we can and do choose a thinning function f such
that esssupgeny [3, €2 (f3a,b)p(db) < 1. Choose L > 1 such that supp f C Ap_q, so
that all vertices of fin lie in Ay_1. Let m € M. For the rest of this section we will
write Cp, := C(0m, &[f«n U {om}]). Let C be a finite subset of X, which is a possible
candidate for Cp,. Given z € X, remark that {o,, <> x in {[C U {z}]} N {C,, = C} is
exactly the same event as {x ~ C} N{C,, = C}, in particular, we remind the reader

that we do not resample the edges when we write £[C].

We remind the reader of the that we write dzx to refer to Leb ®p(d(z, a)), i.e. integration

over X.
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Let k € N. The event {0, > Af; in &y} holds if and only if there exists some
x € n\ fin such that o, < z in {[fin U {om,z}] and = < Af, off Cp,. Then, by
applying the Markov inequality followed by the Mecke equation we find that

) SE| > om ¢ 2 in £27[fan U {om, 2}]}1{z <> Af; off Cpn}
€N\ fin

= )\/XIF’[om <z in [ fun U {om, z}], z <> Afp off Cp](1 — f(z))dx

= )\/X/P[om < xin T [C U {z}],x < Ajp in £[(n\ C) U {z}] | Cp = C]

P[C,, € AC)(1 — f(z))dz.

Notice that when conditioning on C,, = C' the two events become independent. The
former depends only on the edges between C' and x, while the latter only depends on
n\ C and the edges between itself and z. If x ¢ Ap, we have Pz ~ C| = 0. Therefore,

for x € Ay, using the [Stopping Set lemmal, translation invariance and observing that

for a path starting at = to reach Af; it must first reach A(,_1)z(7)¢ we bound

Plra ¢ Ay, in €01\ C) U {za}] | G = C] < Plog ¢ Ay in &)

< esssup H?k_l)L()\),
beM

where we now no longer have a dependence on the mark a. Applying this to the

inequality we find that

m(3) < )\/X/]P’[om & 24 in E[C U {za}] | Cm = C]
< Plra 0 ALy in €[\ O) U {2a}] | G = CPPICon € dCI(1 — f(x))dir,

< )\/X]P’[om 2o In &[Cp U{xaH](1 — f(xq))dzg X esbsesk\}ﬂlp Hé’k_l)L()\)

:/ ox(f;m,a)p(da) x esssup@é’kfl)L(/\).
M beM

The final line is true simply by definition of C,, and ). We now take the esssup over
m in order to allow for iteration. We also rewrite using (4.2)).

esssup 077 (A) < ‘I)i\’oo(f) X ess sup 9&»_1)L()‘)-
meM b
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Now we can iterate to find that

esssup 07 (\) < e~k

meM

where ¢ = —log(®y°(f)).

Together with the fact that 6, is decreasing in ¢ we have that item [ holds for all A < Ao

4.4.2 Ttem [II

We will prove item via a differential inequality, again following [D'T16]. Let A > A..
We show for all m € M and ¢ > 1 that,

o= (1 [ eaomaplan ) @ - o). (43)

We shall say u <> v through x if every possible path from u to v passes through z,

for some u,v,x € X. We apply the [Stopping Set lemmal to the ‘outside component’.
Write Dy, = C(A§, ) for the outside component (without z). We will denote possible
configurations of C(A{, £°™) by C.

The first equality in the next display comes from the Margulis-Russo’s formula. We
then marginalize over possible configurations of D,,. Finally, we see that for o,, <> Af
through = we require every path o,, <> x to avoid D,,, and for = to connect to D,,. In

symbols

d m
aet ()‘7 ¢)

= / Plom, <> Af through z in £7™*[n U {on, z}]]dx
Aiq

= / /]P’[om < A{ through z in £°™* | D,,, = C|P[D,, € dC|dz
Agg1

- /A [ Blon &2 0 €210\ ) U foma}.z 4 A7 in 1) | D = C)

1{o,, & C}P[D,, € dC]dz.

Next, we observe that o, <> = and x <> A{ in {*[n"] are conditionally independent, as
they rely on a disjoint set of edges. Then we will be able to apply the
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lemmalll We first define

Ti = {f : X — [0, 1] measurable | supp(f) C A¢},

over which we will take an infimum. For 2 € X let f¢(z) be the probability that z ~ C
and that 2 ¢ AY so that (n\ C | D,, = C) ~ f¢n by the|Stopping Set lemmal It holds
that fC(x) = (1 — ¥ (z))1{z € A;}. Hence, for all z, € A,

d
S Plon > Af] = /A / Blom ¢+ 2a in £7%[(n\ C) U {0, 2a}] | D = C]

X Plzg <+ Af in €°2[n"] | Dy, = C|1{0om & C}P[D,, € dCldz,

We will now be able to apply the [Stopping Set lemmal Notice that

Plz <> AS in &[] | Dy = C] =P[{z ~ C}U{z € AS}] =1 — f%(z).

Combining we get

d C
ﬁ]}b[om — At]

- /A /P[om & 20 i E[f%0 U {om, 2 MI(1 — £ (20))1{0m & C}P[Dy € dC]dea

> flél% /Athl /P[om — xq In E[fimU{om, 2.}]](1 — f(za))1{om & C}P[Dy, € dC]dx,.

In the last line we may take the infimum over 7; since supp(f¢) C Ay and so f¢ € T;.

We can expand the domain of integration to all of R, since the integrand is equal to

zero outside of A;yq. Since Ty C T, we can bound the inf;c7; by inffc7 from below.

!The Stopping set lemma still holds as expected, the only required modification is to start ‘growing’
with the random set Ag = n N Af N Ary1. Another way to formalize this is by introducing a virtual
‘ghost-vertex’ with a modified connection function such that it connects to all points in Ag.
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We explicitly write out the mark of x = x,. We find that

d

1
Plon < A= 5 inf A [ Plow, ¢ @ in €7 £ {0, (1~ fa))de,

X/1@m¢cnmpmeda
> i}nf /M@A(f;m,a)p(da) / 1{om, & C}P[D,, € dC] (4.4)
1

=5 ot [ oa(fim.a)o(da)Plon, « A7

where to get (4.4) from the previous line we apply the definition of ¢, (4.1) and
take the inf over the larger set 7. This gives us (4.3)). For the RCM we could now

continue to solve the differential inequality. However, A\ > Ae only guarantees that

ess sup,, ey inf re7 fop a(f3m, a)p(da) > 1 for all f.

We define
My\(t) == {m € M| inf / ex(fim,a)p(da) = f}-
FeT Jm

We find that p(My(1)) > 0 as follows. First note that by assumption A/, > 1. By
definition of ¢y (4.1)) it holds for all a,m € M that (- ;m,a) > %gp;\c( ;m,a).

Hence,
1 ; Y - 7 X ; Y N .
meM fET JMm A Ac m fJMm Ae Ac

And so the claim that p(My(1)) > 0 holds.

We now derive item from (4.3)). Let m € M)(1). Thus, for all f € T we have
©x(f) > 1. Then

We divide both sides by 1 — ;" and integrate from Ae to A to obtain

//\ Md)\’ > /)\ id)\'.
5. L=07M(V) % N

By w-substitution with u = 1 — 6]*(\') we recover

—log(1 — 6;"(\)) +log(1 — 07" (X)) > log(=).

F>
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By rearranging we get A.(1 — 07(X.)) > A(1 — 67())), and hence

> A— 5\0(1 B th(j\c)) )
- A

0" (V)

Now we can let t — oo and using the fact that (1 — 0™ ()\.)) < 1 we recover

A=A
mN) > <.
"N = =

It holds that esssup,,car, 1) 0™ () < esssup,, ey 0™(A), and so

A=A
esssup 8™(\) > .
meM A

Additionally, since p(Mx(1)) > 0 we get 6(X\) > 0. [

4.5 Proof of Theorem 4.4

We now have the tools to show Theorem Remember we are trying to show for
A€ (0, ;) that
L@ nA)l
logt ¢(A)

in probability.

We will first use exponential decay of the ¢-percolation probability to prove exponential
decay of the number of vertices in the component containing the origin. We then use

this fact to show () is well defined, continuous and decreasing.

4.5.1 Exponential decay in volume

To get a hold of the relevant facts about the inverse correlation length, we first need an
exponential bound on the number of vertices in the component containing the origin.
We adapt the following arguments from [Dum18§| to the MRCM. We start with a simple

lemma.

Lemma 4.18. Suppose A\ < A.. Let b > a > 2. Then
Py[Aq < AY] < A(2a)? exp(—c(b — a))
where ¢ = c¢(\) is the same constant as in Theorem .
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Proof. We apply the Markov inequality followed by the Mecke equation. We find that

PAlAa > A < By | Y 1{z <> Af)
xEPA(Aa)

= )\/ Plx +» Aj]dx
Aq

< ALeb(Ay)Palo < Af_,]
< )\(2a)deXp(—C(b —a)),

where the exponential bound comes from Theorem [£.7] [ |

Lemma 4.19 (Exponential decay of |C,|). For all A € (0, ;) there exist constants
C,¢ > 0 such that for all m € M and all n sufficiently large we find

P[|Co,, | > n] < Cexp(—én), (4.5)

uniformly over m.

Proof. We follow the proof given in [Duml8, Theorem 3.7]. We need to make some
changes to accommodate the Poisson point process. In particular, we upper bound
the number of Poisson points in a random subset of R?. Recall the notation A, (z) :=

z + [k, k)% We will not explicitly write out the mark for the origin oy,.

Let k > 4, to be chosen later. We define a new graph which we will call H, with vertex
set 2xZ% and edges between vertices z,y € H, if and only if ||z — y||cc < 2k; this graph

has degree D = 3% — 1, where in particular D is independent of k.

We call a finite connected set of vertices of H, an animal. We denote by A(k) the set
of animals that contain the origin and are of cardinality k. For each animal A € A(k)
let T(A) be a maximal stable set of sites in A. That is the largest collection of z € A
such that no two x,y € T(A) share an edge. In the case of multiple possible such sets

any tiebreaker will work.

We shall say that a vertex x in H, is good if the event {A,(z) < As,/2(x)° in €5}

occurs. We shall say an animal A is good if every x € A is good.

Let ¢ € (0,1), to be chosen later. We set k := k(n) := L)\(CQI:)dJ. Let Fj be the event
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that there exists some A € A(k) such that A is good. Then

P[|C,| > n] < P[Fy] + P[|C,| > n, FY]. (4.6)

First we bound P[|C,| > n, Ff]. We define C} := {z € kZ? | Ay(z) NC, # T}, to be

the minimal animal that contains C,.

Then C} is connected, o € C} and if |C}| > D + 1, then all sites in C} are good. It
follows that if K > D + 1 and |C}| > k then Fj, occurs. Also, if |C}| < k then there
exists at least one animal A € A(k) with C}; C A. Hence, if n is large enough so that
k> D +1, then

PlICo| = n, Fi] < P[|Co| = n, |C5] < A]

<P U {n(Usea Ax(z)) > n}

AcA(k)
< Z P[Pois(Ak?|A]) > n).
AcA(k)

By [Pen03, Lemma 9.3] we know that |A(k)| < 2+P.

Hence,
P[|Co| = n, Fy] < 2FDP[Pois(Akk?) > n] < 2"PP[Pois(c'n) > n].

Assume ¢ < e™*. Then by [Pen03, Lemma 1.2, eq. (1.12)] (see also Section [4.6) we
have that P[Pois(c/n) > n] < e=2".

Assume also that ¢/ < Ak?/(Dlog?2), then

2kD < exp((Dlog2)d'n/(Ax?)) < e™

Combining these estimates yields

PlICo| = n, Fi] < exp(—n). (4.7)

Next we bound P[Fy]. It is always possible to find a set T'(A) of cardinality at least
(k—1)/D. Such a set can be constructed iteratively by using a ‘greedy’ approach;

subsequently adding vertices adjacent to neighbors of already added vertices in such a
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way there they are not a direct neighbor of any already chosen vertex.
Then by the union bound,

P[Fy] < P[A is good]

IN

PVz € T(A) : x is good]

We use the fact that the goodness of sites in T'(A) are independent, since the boxes

that define them do not intersect.

PIF < Y PlAs ¢ A, o] T
AcA(k)

JA(R)[P[A > A, o]"/P.

IN

We can now apply Lemma and pick k > 2 sufficiently large such that

PlAg ¢ A5, 0] < Al exp(—ck/2) < é 27D,
Using |A(k)| < 2P* again, we thus find that
P[F,] < 2Pk (e */P27FD) < exp(—c'n/(2AkD)). (4.8)
Putting , and together gives us . ]

4.5.2 Properties of the inverse correlation length

To prove the only missing ingredient is a more detailed understanding of
the inverse correlation length (. We recall the Definition

. 1 . o
¢"(A) = lim ——log P[|C,, | = n in &3] (1)
1
o1 _ . com
Jim ——logPln < |Co,,| < co in &&™]. (C2)

We start with showing that the limit exists using the following lemma, a proof of which
can be found in [Fek23]|.

Lemma 4.20 (Fekete’s Subadditivity Lemma). Let (u,), C R be a sequence of num-
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bers. If for all n and m we have upym < Up + U, then

. Un .o Un
lim — = inf — € [—00, 0).
n—oo n n n

The following proof is based on [Pen03|, where the same fact is shown for the case
where ¥(x) = 1{||z| < 1}.

Proof of Lemma[f.3 First we show convergence of (C1). We then show equality of
(C1) and (C2)). Then we show continuity and the limiting behavior as A goes to zero.

We show each of these properties point-wise in m.

Convergence To prove convergence we use [Fekete’s Subadditivity Lemmal Showing

subadditivity for —logp!" is equivalent to showing supermultiplicativity for p,. It is

easier to show supermultiplicativity for the following modified quantity

Pyl = )\"/ 1{opm <T1 <+ <Tp}g(om,x1,...,Tpn)eXp <—)\/ ¢°m’f(z)dz> dz,
Xn X

where the difference to p,11 is that the indicator includes the origirﬂ Note that g is
defined as in Proposition It can be interpreted as the probability that |C,, .| = n+1

and that the origin is the left-most point. It holds that p,+1 = pp41/(n + 1). This is

true since we have a uniform (i.e. n%rl) chance that the origin is the left-most vertex.

Notice that by symmetry we also have:
ﬁmlz)\”/xnl{xl < <TG < o < Tjg1 < - < Ty}
X g(Om, T1, ..., Tp) €XP (—)\ /X ¢Om’f(z)dz> d#,
for every i € [[1,n]. Combining we find
Py 1Pho1
= \"tk /n /Xk 9(0m, 215+ 20)9(Oms Y1y« -y Ym) Lo < T1 < -+ < Tp}

X 1{y; < -+ <7 < om}exp <—)\/ Yo (2)dz + / wo’”’g(z)dz> dydz
X X

2When written as in Remark
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It is immediately clear that
Hy < <P <omtl{om <T1 < <Tp}=H{y < <Yp <0om <T1 < -+ < Tp}.
We rename y1,...,Ym t0 Tpyi, ..., Tntm. We now reduced the problem to showing

g(0m7«731, v 7$n)g(0ma Tn+1,--- 7wn+m) < Q(Om,xh oo 7xn+m)

and
¢Om:$17~~~7xn (Z) + wom,anrlv-wszrm (Z) Z ¢O’f(2).

The first equation follows, since the union of two connected graphs with a vertex in
common is again a connected graph. The second equation holds by the union bound.

Hence, we get

~m ~m ~m
Pn+1Pk+1 < Pkt

By choosing @] := —logpnr+1 and applying [Fekete’s Subadditivity Lemmal we know

that lim, e % exists. By rearranging and using the fact that p' = % we find that

log ™ log p™ — 1 log p™
lim ——8Pn _ jjy, O8Pn T 0BTy, 08Pn

n—o00 n n—00 n n—0o0 n

Furthermore, since the u]"’s are lower bounded by 0 we get the stronger bound that
¢"™(N\) € [0,00). We also find immediately by Lemma that if A < A. we have
¢"™(\) > 0:

logé n—00  ~
=,

1 ~
——log(Cexp(—cn)) > ¢ — ¢>0.
n n

Importantly, the above bound holds uniformly for every m, so we find that

¢(A) = ¢ () > 0. (4.9)

Equivalence of definitions (C1) and (C2) We show the two definitions of the

m-inverse correlation length are indeed equivalent. It suffices to show that

1
IP>[|Com| = n} )" n—o00 1

=g\ =
=)= (g o T

We immediately know that ¢)' < 1, so we only need to bound it from below. Let
0 < ¢ < ™(\) < (T, to be chosen later (which we can do by (4.9))). For now (™ ()\)
will refer to (C1)), i.e. the definition using P[|C,,, | = n]. Then, by existence of the
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limit, we know that for n sufficiently large it holds that
e < PC,, | =n] <e . (4.10)
This gives us the following bounds on Pn <(C,,,| < 0o] =3, P[|Co,,| = nl,

e*C+n e—g—n

1_ et <Pln <|C,,,| < o0 < 1ot (4.11)

Now let ¢ > 0. We want to show the existence of an ng such that for all n > ng we
have ¢™ € (1 — ¢, 1]. We now choose (¥ = (()\) + &/4. Let n be sufficiently large, such

that (4.10]) holds and
e /?(1 - e_Ci)% > (1—¢). (4.12)

Now we bound ¢* using (4.10]) and (4.11):

—¢* 1— -~ %
q > e ( 7Cf ) .
(&

Substituting for the defintion of ¢(* together with (4.12)) we find that
gt >1—e.
Thus, the two definitions of (" are equivalent.
Continuity and monotonicity For continuity and monotonicity of (" we follow
[Pen03, Theorem 10.1]. First we show that (" is non-increasing and continuous. Con-

sider the quantities g, (\) = P[|C,,,| = n] and ¢} :=P[n < |C,,,| < o0]. It is easy to see

that ;7 is increasing in \ for every n in the subcritical regime. We now define
w™(A) = lim gF(\)Y" =",
We see that v is non-decreasing, which in turn shows that (" is non-increasing in .

We move on to continuity in A. We couple the MRCM at different intensities .
Consider 0 < A < pu < Ae. We mark every point X; with an additional mark A\; ~
Unif([0, 4]). For a given intensity A we may retain all points where \; < A to recover

&y from &,

Now, one way for the event {|C,,, | = n in £§™} to hold is to require {|C,,, | = n in £}
and all (X;, \;) € C,,, have the property that A\; < A, which has probability \/u, per

54



vertex. This gives

o A\ "1 o
B(C,,,| = n in €5n] > (M) P[Cor,| = n in £5].
Then

n—oo

n—1 1/n
W) = Tim gu()M" > lim ((A) q;;”(m> = 2ump).

This together with the fact that «™ is non-decreasing gives the continuity for u™ as
follows. Fix some A € (0, ;). Let € > 0, § = Ae/u™(\) and X € (A—3d,\+ ). Assume
N > A. Then

The case where \' < ) is analogous.

Continuity of 4™ implies that (™ is also continuous in A in the range (0, \;). Notice
further that our choice of ¢ and ¢ did not depend on m. Thus, the family (¢™)mem is

equicontinuous implying that ¢ is also continuous.

Near zero behavior We show as A — 0 that ("(\,¢¥) — oo. We show this by
bounding the size of the component of the origin by the total progeny (total number of
vertices) of a Galton-Watson tree. For more details see [Pen93| where a similar strategy

was used. We use the following theorem by [Dwa69).

Lemma 4.21 (Dwass’ formula). Let 7 be a Galton-Watson tree with offspring distri-
bution v. Let |7| be its total progeny. We let Ny, := X1 + - + X}, where X; ~ v iid.
Then

Pllr| = K] = %P[Nk ]

Now we can dominate |C,,,| by a Galton-Watson tree 7 with offspring distribution
Pois(AZ;7), where Z° = esssupgey Jga Jog (x5 a,b)p(db). It dominates |C,,, | for all m
in the sense that

Plir| > k] = P[|Co,| = K.

The use of the essential supremum will help us avoid having to track the marks of all

vertices in C,,,. For simplicity, we write a = )\Zf;f’.

A proof of this for the RCM was given in [Pen93]. We know that for o < 1 the Galton-

Watson tree is subcritical and so the total progeny |7| of the tree is almost-surely finite.
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By using [Dwass’ formulal we find that

e}

Pl|7] > k] = Z P[Pois(jo) = j — 1]

e—]a -1

i—k 7!

By the fact that for all j € N we have J]—], < e/ we find that

o0

Z (1=a)

J

(e )

B a(l —el=2a)

Plir| > K]

| /\

By substituting AZ° back in for o we find that

lim sup — logPHC | > n] <limsup — logP[|7‘| > nj
n

n—oo n—00

1 1
< lim sup ((1 — a) +loga — —loga — — log(l - elfaa)>
n n

n—0o0

<1—=AZF +1log (AZ)) -

And so the upper bound tends to —oo as A (or Z;Zo) goes to zero. Hence, by applying
Definition we have that ("™(\,¢) — oco.

Equivalence of definitions (C3) and (C4) Let ¢™"()\) := essinf,,en ™. We know
that ¢(™()\) > 0. Let € > 0 be small. Define M. := {m € M | (™(\) < (™®(\) + ¢}.
We know that p(M.) > 0 by the definition of essinf.

For m € M, by the definition of (", and for n sufficiently large it holds that:

e < PIC,,, | =n) < €O (4.13)

And so we can upper bound

/ P[‘Com‘ = n]p(dm) < / e—(Cm—e)np(dm) < e—(Cmin—E)n'
M M
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For the lower bound we know by definition of M. and (4.13]):

/PW@Azmmme/ B[IC,,,| = nlp(dm) > e~ ("2 p(AL).
M

€

Now, taking the — log of these expressions and dividing by n we find that:
1 min 1 n—00  ~min
~Lrog [ BlCo, | = nlp(am) < ¢ 1 22 — Lrog(p(h)) 27 ¢ 42z
M

Thus, it follows that (\) = (™ (N).

All marks are equal Now assume that A, B C M measurable with p(A4) > 0 and
p(B) > 0. Assume by contradiction that ¢4 > ¢B. We write ¢4 — (B = § > 0. Then,

by definition of ¢ there must exist some ng € N such that for all n > ny we have that
1 1 4]
~1og Bl|Coul = 7] >~ logP{[Cogl =] + 5.
By rewriting it follows that
P(|Co, | = 1] < ™ 3"P[|Cop| = n]. (4.14)

It holds that P[|C,,| = n] > P[|Co,| = n,Co, N Xp # @]. By Corollary we find
that

p(B)  E[Cop NXal| [Copl =1l
p(A) EllCoy NX5| [1Corl = n,Cop N X5 # 2]

P[|Co,| =1, Co,NXp # 2] = P[|Cop| = n].

We can now upper bound the denominator by

E[|Co, NXB| | |Coy| =n,Co, NXp # @] < n.

By (A1) we know that for sufficiently large n it must holds that
E[|Cop NXal [ |Cop| =n] = ¢,
for some ¢ > 0.
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Combining we find that

B([Cos| = 1, Coy N X £ 2] > pﬁ;;

i

PlICop | = nl.

This is a contradiction to (4.14]), for sufficiently large n. Note that we require assump-
tion (A1) for this to hold true, as it guarantees that P[C,, N X4 # @] # 0. And thus
A =B u

4.5.3 Proof of Theorem [4.4]

The following proof closely follows the proof on the log bound of the Poisson Boolean
model by Penrose in [Pen03, Theorem 10.3].

Proof of[{.J} We start by showing that the largest component in a box with side lengths
2s is no larger than ﬁ log 2s. Let a > ﬁ. By applying the Markov bound and then

the Mecke formula we find

P[IL1(&ANAs)| > alog2s] <E

S {0 € N A > alog 23}]

xen

= )\/AS/MPHC(xm,é m N Ag)| > alog2s|p(dm)dx

Now consider some (' € (g, ¢()N)). By definition (C3)) of () as a limit, we know that

for s large enough

/ PlIC(xm, "™ N A)| > alog2s in £§™]p(dm) < / P[|Co,,| > alog2s in £5™]p(dm)
M M

< exp(—C'alog 2s) = (25) ¢

Hence, by our choices of o and ¢/, we find

P[|L1 (€4 N Ay)| > alog 2s] < A(2s)4¢'@ 222 .

For the other direction we choose B < d/¢(A) and ¢" € (¢(A),d/B). We will tile
the box Ag with smaller boxes. Let m(s) = L@jd denote the number of boxes.
Let {A1s,..., Ays),s) be the maximal collection of disjoint boxes with side-length
2s/ W > 23 log 2s, where, by our choice of side-length, the A; ; fill Ay exactly. Let
x; s denote the center of the box A;s. Now consider X € (0, \) such that (') < d/f.
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This is possible by the continuity of (. We can separate 7, into a union of 7y, and

v = {(Xi, X)) | X <N <AL

Now take ¢((\) < ¢" < d/B.

Let 2 € R? and 7 > 0. Denote by B,.(x) the closed ball with radius r centered at z. If
nxv.a N Bi(z;s) consists of a single point we denote that point by X;; and let

Xi s
%,s = |C(Xi,5a€)\/’ N Bi,s)|,

where X ; inherits the connections from the original sampling of {. If [ny AN B; | # 1
then let V; = 0. Let p be the volume of a d-dimensional unit ball. By our choice of
box size we know that {0 < V;, < Blog2s} C {Cx,,(v) C Bis} and so V;, has the
distribution of the size of the component of the origin. Then, by independence of 7y

and 7y, we find for large s that

P[Vis > Blogs] > (A — )\’)e_“(A_’\/)/ P[|Co,,| > Blog2s in &5 p(dm)
M
> ¢ exp(—¢"Blog2s) = s P,
where the inequality follows from the definition of ¢ and ¢ = (A — X)e #A=A). The

random variables V; ; are independent, since they are dependent on configurations in

disjoint boxes. It follows that
m(s)

P[ () {Vis < Blog2s}] < (1- os=¢"B)™ )
=1

< exp(—c's<"Pm(s))

which tends to zero by the definition of m(s) and the fact that ¢ < d. On the other
hand, if for some ¢ we have V; ; > Blog2s, then Li(&{, N Ag) > Slog2s. This gives us
the desired result. [ ]

4.6 Large Poisson Deviations

Theorem 4.22. Let ¢ >0 and a > X > 0. Then for any ¢’ € (0,alog(§) + X —a) and
all sufficiently large k > 0 we find that

P[Pois(Ak + ¢) > ak] < exp(—c'k).

59



See also [Pen03].

Proof. We use the Chernoff bound, which is a direct consequence of the Markov in-
equality. Let X be a random variable with a well defined moment generating function
and a € R. Then

P[X > a] = Pl > €' < e ME[eX].

This bound only holds if ¢ > 0, since x ~ e'® is only increasing for such t. We can take

the infimum with respect to all such ¢. This gives us

P[X > a] < inf e "“E[eX].
t>0

We can now apply this to a Poisson random variable. Let X ~ Pois(A\) and a > 0.
Using the fact that E[e!¥X] = e*¢'~1) we obtain

P[X > a] < inf emtatAC A
teR

To find the infimum we take the derivative:

d _ t_ — t_) !
Ze ta+Me /\:(—a—l—)\et)e ta+Ae A:O.

dt N—_———
>0

By solving for 0 we obtain the following;:
a
t* =log(~).
0g(+)

Note that by our choice of ¢ that this bound only holds when a > A. Plugging back

into our original bound we finally find
P[X > CL] < 6_10g(a/)\)a+a—)\‘

Now we can use the values Ak + ¢ and ak where ¢ > A > 0 and ¢ € R. Then if
k> c¢/(a — \) we find that

Y+ A—at )

P[Pois(Ak + ¢) > ak] < exp ( — k (alog( k:

a
e+ ¢
>0

< efc’k
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Chapter 5

The Supercritical Regime

Percolation models behave in significantly different ways when they are supercritical,
which in our case means A > A.. The key difference is that the model now contains
an infinite component. In essence, the study of the supercritical regime reduces to
understanding the behavior of the infinite component. For us the local connectivity of

the infinite component will be most important.

Large parts of this chapter concern themselves with adopting ideas from |[CMT24] to the
MRCM. The results are needed to ensure that long paths connect with high probability
within a bounded region. The challenges of translating the methods are more apparent
in this chapter than the previous, and in particular some statements are outright false

in this setting.

As in the previous chapter, the [Stopping Set lemmal will be a key tool.

5.1 Statement

The key statement we want to prove is that in the super-critical regime the largest
component takes up a 6(\) proportion of all points in a box. This is a natural conjecture
as we might expect the largest component in Ay to approximately be the intersection
of the infinite component with A;. Note that by Mecke

E[C®NAf]=FE | Y 1{z+ oo}| = A2s)%0()).
zENNAs
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Figure 5-1: An instance of the MRCM at a supercritical intensity. The largest compo-
nent is highlighted.

The key difficulty lies in proving that the infinite component doesn’t get cut in unlikely
ways by the box, thereby dividing C*° into smaller components inside the box. The

following theorem essentially states that this does not happen.

Theorem 5.1. Assuming (A2) (defined below), d > 2 and X > \.(y)) we have that

L E[|Ly(A)]

5—00 )\(Zs)d - 9()\,’&)

For intuition, notice in Figure [5-1] that the fraction of points that are occupied by
the largest component are not evenly spread out, but rather clump together and leave
holes. To deal with this difficulty we will employ a coarse-graining argument that will

allow us to work at a scale where we may essentially ignore such defects.
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5.1.1 Outline

In Section [5.2] we prove an upper bound on the ‘two-arm event’, the event where an
inserted point connects to the complement of a ball with two disjoint paths, following
ideas from |[CMT23|. In Sectionwe expand the previous bound to get a lower bound

on the probability on the event that two disjoint components leave an annulus.

We use this bound to prove a classic result by Grimmett and Marstrand in Chapter
[6] following ideas from [DKT21|. It states that in the supercritical regime we can find
a sufficiently thick two-dimensional slab such that the process also percolates in this
slab. We then use the Grimmett-Marstrand result to improve our uniqueness bounds
in Section

Finally, in Section [6.3], we use the previous bounds to ‘glue’ paths together and prove
Theorem [5.1f following ideas from [Pen22].

5.1.2 Assumptions

We will need to assume the following lemma as it will be out of the scope of this thesis

to prove.

Lemma 5.2. Let A > A.. There exists some ¢,d > 0 such that for all s > 1 we have:

P[B, <> 00] > 1 —¢s?. (A2)

Note that once we have proven Theorem [5.1| (using ) the above assumption holds
with § = d. Moreover, we will prove a result in Chapter [6] which will allow us to show
that the decay must be exponential (assuming ) Hence, this is a fairly modest
assumption. The difficulty lies in proving this statement ad hoc. We will require
to ensure the existence of certain long paths. Together with ‘uniqueness’ statements
which we will prove in the following two sections this will be the key tool to construct

large connected components.

In lattice percolation has been shown without further assumptions, see e.g.
[CMT23]. They rely on a bound by Talagrand [Tal94] that does not, in our case, hold
for the Poisson point processes. A version of this bound has been proven in [NPY19),
but requires additional assumptions that do not hold in our case. In particular, they
provide a counterexample to the general statement. In essence the issue with Poisson

point processes is that an arbitrarily large number of points may clump together.
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5.1.3 Preliminary Results

We will require the following two facts about the Poisson distribution before we can
continue. The first lemma states that Poissonian ‘overshoots’ are in expectation not

more than their expected value.

Lemma 5.3. Let X ~ Pois(\) where A € R, and let a € N. Then

EX —a|X >a] <A

Proof.

k
E[X1{X >a}] = Zl{:e"\% = \P[X >a—1].
k>a )

By the definition of conditional expectation we have

PX >a—1] PX =a—1]
E[X|X2a]:)\wzx\<l+w>. (5.1)

Then we bound

PX=a-1 X1/ (@ — 1) A*/al
A [PXZ I /(a)\k):a /“Akga. (5.2)
[ = a] k>a kT k>a kT
Combining (5.1 and (5.2)) yields: E[X | X > a] < XA +a. |

The following bound on the moments of Poisson random variables is from [AhI22]

(where the author proves a sharper and more general bound).

Lemma 5.4. Let X ~ Pois(\) and k > 0, then

E[X*] < X exp <2A> :

5.2 Two-arm Bound

The goal of this Section is to prove an upper bound on the ‘two-arm’ event. In words
the two-arm event determines if two disjoint clusters are close enough to each other

that a single added point can connect them.

Let K be a compact subset of R and € K x M. Denote by €x := €x(£)) the
collection of connected components in £, N K that are connected to K¢ in &. For

each component we only consider the points that are in K. Furthermore, we consider
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two such components separate even if they connect outside K. We denote by €% the

collection of such components in the graph £§. Consider the following event
Armg(K) = {|C%| < |€x|}.

In words, the arm event happens when x connects to K¢ through two (or more) com-
ponents that are only connected through z. We will write Arm,(t) := Arm,(B;) and
Arm(t) := Army(t).

For subsets K C R? we introduce the following notation. First, we write |K| to denote
the Lebesgue measure of K. We also define the set 0K = {r € K | d(x, K¢) < 1}.

The goal of this section is bound the probability of the two-arm event as a function of ¢.
We will require the following technical lemma adapted from [CMT23| to the continuum.
1

Lemma 5.5. Let K C R? be a measurable compact set. Let e € (0, 5). Let h be a

function from connected components to the real numbers. Then

E| > no) gA(/K/ME[W} p(dm)dx>%<|m€,ammls>

Celk

[NIES

Lemma [5.5| might seem unnatural at first, but it will help us reduce the proof of
Proposition [5.6] to finding a suitable function h.

Proof. For this proof we will write € = €x and drop explicit mentions of marks. First,
we notice that we can replace the sum over components by a sum over points in those
components as long as we divide by the number of points in that given component. By
the Mecke formula

E

> h(C)

cece

=E| > h(cc”*“) 1{z < K¢}

xenNK Cal

:,\/KEHEZ(;’TH{:EHKC} dx

We require the indicator 1{z <> K¢} to ensure that C, € €. Next we apply the
Cauchy-Schwarz inequality. We use the fact that [ E[f(z)g(x)]dz is an inner product.
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We choose f(z) = ICz}IL((%S)W and g(z) = wifg/}é We find that

n([[5[Hel)ar) ([ 5[Mes kY )

The contents of the left parentheses are already as desired. Now we have to simplify

o=

Eb:mm

cec

the contents of the right parentheses. We use the Mecke equation again (in the other
direction) together with the fact that the sum over all points reaching K¢ is equal to

the sum over all components reaching K¢ multiplied by their number of vertices. This

gives
1{z <> K¢} 1 1{z < K¢}
E|l—— " " Jldr=_FE w7
/K [ Ca[T ] 3| 2 e
_xEnﬂK
T
=JE| D [0 1.
Lcee

Next, we apply Holder’s inequality to the sum inside the expected value with parameters

1

- and l—ie, and again with the same parameters in the third inequality. Then,

N
\
&=

%E}jmﬂl

ce¢

<E (S lo)e- |e:r“]
L Ced

<SSE[CS v Y

| z€EnNK zENNIN K

< SE (K x M)FE [n(@" K x )]~

_ ’K‘s‘ainKllfa_

To get to the second line from the first line note that the total number of points in the
components of € is naturally upper bounded by the number of vertices in K. Similarly,
the number of components |€| is bounded by the number of vertices in the boundary

OMK , since each component has to reach K¢ by definition. |

We will use Lemma to show the following key result.

Proposition 5.6. Let A > 0. There exists some g > 0, tg > 0 and cg > 0 such that
for all e € (0,e9) and all t >ty we have

Py[Arm(t)] <
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Note that the mark of the origin is sampled randomly by P.

1
logt

By setting € = and noting that t'/1°8* = ¢ we get the following corollary.

Corollary 5.7. Let A > 0 and t > e we have

PAlArm()] < ¢ (1‘3}”) |

where ¢ = ecy, ¢y is as in Proposition[5.6 and e is Euler’s number.

We remind the reader of the following notation. If A C X is a locally finite set, we
define

pAx) =1 [ (1= ¢(=z,)), 22)

yeA

to be the probability of  connecting to at least one vertex in A. The following proof
adapts an argument in [CMT23| to the MRCM.

Proof of Proposition[5.6,. We fix ¢ > 2 and s = (¢t + 1)/2. We notice that for all
xr € Bsq
P[Arm,(t)] < P[Arm(Bs(z))] = P[Arm_,(Bs)],

since Army(t) implies Arm,(Bs(z)). Note that there is a ‘buffer’ of distance 1 between
x € Bs_1 and By to guarantee that x can not share an edge with a point outside Bs,

otherwise the above implication could break. Integrating x over Bs;_; we find

1
PLrm(t)] < e /B  PlArm(s)de

1
<
|Bsfll Bs

P[Arm,(s)]dz.

We want to apply Lemma which means we have to find the right h to upper-
bound E[ZwenﬁBs 1{Armg(s)}]. We write € := €p, and €* := €%, We define
C = Ucee € to be the collection of all points that are connected to BS. Similarly, we
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Figure 5-2: On the left hand side we sketch out Arm,(t), with a point z and Bs(x)
overlaid in blue. On the right hand side we sketch Arm,(Bs(x)), re-centered on z.
Notice that Arm,(t) necessarily implies Arm,(Bs(x)).

define C* := Ucee= C. We observe that

/IP)[:CNC]dx:/BIF’[a:HBg]dx—/ P [z < B,z # Cldx

s ainBS
1 c /. d—1
> XE Z 1{x < B}| — Ac's (5.4)
_a;EnﬂBs
1 i /. d—1
:XE Z|C’\]—)\cs ,
LCee

for some constant ¢’ > 0.

For a given point x, we have that the event Arm,(s) occurs if z connects to two (or
more) C' € €. Explicitly Armgy(s) = {d cce 1{z ~ C} > 2}. We also know that for
any random variable X taking values in N it holds that P[X > 2] < E[X]|—-P[X > l]ﬂ
Using in line 2 we find that

/BH P[Army(s)]dz < /BH E[ (Z 1{z ~ C}> —1{z ~ C}] da

Cec (5.5)
1
<E / wcxdx—C) .
LZ@( [ WS 3icl
'Using the fact that E[X] =Y _ P[X > n].
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We now want to use Lemma [5.5] with

h(C) = )\/B » YC (z)dz — |C]. (5.6)

To prepare for the final step we first show

h(Ca)?
E
[|Cx\”5

] < ¢ < 00, (5.7)

where ¢, is independent of s and x. The strategy will be to construct C, iteratively

in the same manner as in the proof of the [Stopping Set lemmal except we stop the
exploration outside of Bys. We start with A_; = @ and Ay = {z}. We construct A; by

adding all neighbors of A;_1 in Bs. For simplicity of notation we define the increment

Nijy1:= A1\ Ay We also define the following integrals

cri=A [ s and = [ @)1= )
BsxM BsxM
Note that ag =0

To bound h(C;) we will construct a martingale X; whose terminal value is h(Cy).
Consider the filtration F; := o(Ao, ..., A;). We will use the following three facts that
arise in the proof of the [Stopping Set lemmal

1. The sets n \ Ayy1 and Agyq \ Ay are independent given F.

2. The set n\ Ay 1 is distributed like a Poisson point process with intensity A(1—14¢)
given Fi.

3. Given F; the set Nyqp is distributed like a Poisson point process with intensity

AN (1 — i),
We define X; := |A;| — ay. We will show that this is a martingale with the needed
propertiesﬂ The identity

YA A = (L (1 - ) — g

vVt >0,
=M1 -yt

shows that ay — ay—1 = B and so oy = > ., Bs. We verify that (X¢)¢>¢ is indeed a

2X, is defined as the negation of h, as this is the more natural choice from a martingale perspective.
This will not matter as we will square h later.
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martingale using fact 3. from above:

E[X;s1 — X | Fi] = E[[Nys1| — A PN (1 — pAn)dy | F]
BsxM

= E[|Nps1| = E[|Nega| | Fi] | 2] = 0.

Note that Xo = 1. Let 7' := inf{t € N | N; = @} be the almost surely finite random
time when no new points in By are path-connected to x. Notice that by definition of

T and the exploration process we have A = Ap_1 = C,. Similarly, we also find that
XT = XT—I- ThUS,

Xr = |Ar| - )\/ YATdx = —h(Cy).
BsxM

Note that (a¢): and (3;); are predictable sequences: they are measurable with respect
to Fi—1. Then, using the fact that |A; \ As—1| ~ Pois(5;) conditional on F;_; we find

E[(X; — Xi-1)%] = E[(|Ni| — B1)°]

= E[E[B? — 26| Ne| + [ Ne[* | Fir]]
= E[E[5} — 267 + B2 + B | Fiuil]
=E[JA\ Ai-1]].

We know by orthogonality of martingale increments that

¢ t
E[X7] - EIX3) = D E[(Xi - Xi-1)’] = D B[4\ Aima]] = E[|4]] - 1. (5.8)
i=1 i=1
This can be interpreted as saying that the variance of the exploration process is exactly
the size of the component at that point in the process, as might be expected from a

Poisson point process.

Next we will require a bound on E[X21{ 4, c[a] for any a,b € Rxg with a < b. We
introduce Sp := min{t > 0 : |A¢| > b} to be the stopping time where |A¢| first exceeds
b. It is possible for the event {S, = oo} to have positive probability, i.e. if |[Ap| < b.
On the other hand, if Sy < oo it immediately follows that S, < T, since T is the last
time Ay can increase. We now drop the subscript S = Sy for notational convenience.
Notice that:

E [X71(ariefan)y] < E[XF1gari<y] = E [XFas1{5=00}] - (5.9)
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The stopping time T'A S is almost surely at most b, since the slowest |A;| can increase
without stopping is 1 every time step. If |A;| stops increasing any time before reaching
b then T' < b. By the Optional Stopping theorem (applied to the martingale X7 — | A;|)
and we can write 0 = E[X}, ¢ — [Aras]]. We multiply by 1 = 100} + Lis<oo}

and rewrite as

E [X7ns1(5=001] = E [|[Arns]1 {500} + [ATAS|1{5<00} — X§L{5<00}] - (5.10)

We can bound |Aras|1{s—oc} < band —XE1ig o0y < 0. Next we bound |[Apas|1is<oc}-
Since the increment |Ng| has to be strictly larger than b — |Ag_1], and by definition of
S we get

|Ng| > b—|Ag_1] > 0.

Next we wish to apply Lemma to |Ng|. But since S is a stopping time |Ng| need
not be Poisson distributed. We want to say that “|Ng| ~ Pois(8g)”. To make this
rigorous we condition on {S = k} = {|Ng| > b — |Ap_1|} N {|Ax_1| < b}.

E[|Aras|ls<od) = > E[|Ax[1{S = k}]
k>1

=Y EE[(Ne] + [Ap-1DI{INe| > b — [Ax_a]} | Feo1] 1{|Ax1| < B}
E>1

Now using Lemma [5.3| (rewritten as E[X1{X > a}] < (A + a)P[X > a]) we find

E[|Aras|ls<oo] < Y E[(B +b+ D[S = & | Froq]1{|Ax1| < )]
k>1

By the union bound, conditionally on |[Ag_1| < b, we have that 8 < AZPNg—1 <
AZ2b. Inserting this bound above we find:

E[|Aras|ls<oe] <D (Z7 +2)b-PIS = k] < (AZY + 2)b.
k>1

Combining the above display with (5.10) and (5.9) we get

E[XF1(arciany] < AZ] +3)0.

We remind the reader of the definition of A (5.6). By using the above bound we can

71



show ([5.7)):

h(C:)? X7 1 ,
& [W} =k [|AT|1+€ < Z WE [XT1{2i§|AT\§2i+1}]
>0

24 AZF+3
e =27 o=

(5.11)

<(ZF+3))

120

Now we will combine our efforts to get the bound we want. Combining (5.3) and (5.5))

we get that
PlArm(t + M\ stt
[ ( )] >‘|Bs 1’ (

There exists some constant ¢’ > 0 such that ist T < ’s71. We can now use Lemma
E.5 to find that

1 . l—e
1 h(Ca:)Q] >2 <\0‘“Bs|>2 1
PlArm®)] < [ —— E dz + s
im0 < (157 [, B i B

— 0'" By _
Finally we apply (5.11)). Notice that = 2 : < 27! for e € (0,1) and | A < egt™!
for some constant ¢4 depending only on the dimensionﬂ Thus, we can find some

Ce = 0(57%) such that the following holds

1 l1—¢

AZ)+3\2 [|omBg|\ 2z Co ., 1.c
P S /n_—1 0 ,—14¢
P[Arm(t)] < (2 = ) <\Bs_1|> +d's7h < —t 2t

> h(C)

cec¢

5.3 Uniqueness

It is our goal in Section to construct long paths inside a box. In this section we
will prove a bound on a certain uniqueness event which will allow us to ‘glue’ shorter

paths together. We define the following event for 0 < r < s:

U(r,s) :==Ux(r,s) =
{There is at most 1 cluster intersecting both B, and B¢ in £ N (Bf_; N Bs11)}.

Note that U(r, s) allows there to be no crossing. One can interpret U(r, s)¢ as a stronger

version of the two-arm event. We remind the reader of the notation 74(x,y) for the

3The bound follows from concavity of 1 — 27" on the interval [0, 1].
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probability that x <> y when only considering vertices in By (see Definition . The
following has been adapted to this setting from [CMT23].

Proposition 5.8. Assume A > 0 such that (X) > 0. There exists some x € (0,1) and
co > 0 such that for all v > 1 sufficiently large it holds that

P[U(h(r), )] > 1 — cor™ /4,

where h(r) := exp(log(r)X).

We remark that h(r) grows faster than log(r), but slower than r* for any a € (0,1)
as 1 — co. We will denote the inverse of h(r) by H(r) = exp(log(r)'/X). Accordingly,

H(r) grows superpolynomially, but subexponentially as r — co.

Recall the definition of 7)(x,y), i.e. the restricted two-point function (2.4)). It is equal
to the probability that x connects to y via at least one vertex in 7. Similarly, we define
Ta,s(x,y) as the restricted two-point on {[n*¥ N By]. By our assumptions on 1) it follows

immediately that if d(x,y) > 1 then 7y s(z,y) = T\ s(z, y).

To prove the above Proposition [5.8 we require the following lemma which is adapted
from [CMT24].

Lemma 5.9. For all A > 0, a > 1 and r,s,t € R such that 1 < r < s < t/2 there

exists some constant ¢4 (depending on \) such that

P[Arm(t/2)]' "=,

2a ) p2d—24d

PIOA(r,1)] < ea exp </\rd—1 inf, e, Ts(z,9)
Z,Y r 'S )

Remark 5.10. Due to extra challenges which arise from the MRCM the bound in the
above lemma is slightly weaker than the discrete equivalent in [CMT24]. Namely, the

discrete version does not require the 1 — é exponent or the related exp term.

A further difference is the requirement of the modified two-point function 7.

If we can get a uniform lower bound on the connection probability 75 then we can get
Proposition [5.8]

Proof of Lemma[5.9. We remind the reader that 9B, is used to refer to the set {z €
B, | d(z, Bf) <1}, and that 5y =\ ¥$n and (1| Cx = C) ~ (1cy U C).

For the event Uy (r,t)¢ to hold it is required that we find two distinct clusters crossing

the annulus By \ B,. Each such cluster must contain a vertex in 0" B,.. By the Markov
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inequality and the Mecke equation we find that
+

POMrOT<E| > oo By <5 BY)
{z,y}CnNo" B,

2
=5 [ [ Plee By B in g\ Gl dedy,
2 87,77,BT aanr

We condition on the possible configurations of C,. Given z,y € 0B, we define the

following measure
Kay(dC) = 1{C N B # @,y ¢ C}P[C(z,¢{[n™Y]) € dCY,

to represent all admissible components of = that reach Bf without connecting to y. We

condition on C, = C:

2
U (r,1)] < / / / Ply < B in &"\ O] | Co = Clray (dC)dyda.
2 ainBr ainBT ’

By the [Stopping Set lemma) we can write

Ply+ Bf in &Y \C]|C. =C] =P yHBfinf[ni’Q] )

To use the two-arm bound we want the component C, to be ‘close to’, but not connected
to C; = C, which we represent by y connecting to the points that are ‘deleted’” in 7cy,
i.e. . We will treat the deleted points more carefully later.

For some admissible C' we apply the FKG inequality to the events {y <> By in ¢ [ni’@]}
and {y < ¥&n in €[nY N B,]} (which are both increasing).

Ply ¢ Bf in E[nj ],y > ¥n in €Y N By
Py < ¢Cn in £[n¥ N By

Py <+ Byf in 5[77?@]] < (5.12)

First we bound the denominator. To reach x from y one needs to first reach a neighbor
of . Tt is easier to reach a neighbor of C' than it is to reach a neighbor of z, since in

particular {z} C C. So we can bound the denominator by

P [y < ¥ in €Y N By]] > Ply > &y in &[n¥ N By)] = Jnf Toay). (5:13)

Notice that (5.13)) is now independent of x and .

Next we bound the numerator. We want to marginalize over C. To do so correctly, we
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will need to define 7,c,) and Y1 rigorously. Note that ¢¢n is difficult to define since

by definition C, should not have any additional connections.

We start with two independent instances of an independent edge marking £* = £%[n)]
and & = E””[ﬁ] Let C, := Cx(?”) We now define Em = §z[n<@>;@], where the
semicolon denotes the fact that C, already has defined edges and will (by definition)
not share any edges with Ul We remark that Ef has the same law as £* | Cp = C,

(this is a direct corollary of the [Stopping Set lemmal). The advantage of this coupling

is that we now have an explicit set of ‘deleted’ vertices ¢§n that we can reason about.
These points can also be thought of as ‘sprinkled’ or ‘ghost’ points. This extra work is
required as it is ‘¢¢*n’ would not be well-defined otherwise. A similar construction is

used in |[CD24]. We can now write:

B[ Br in €lutey)oy > S0 in € 0B sy (dC)

- (5.14)
=P |02 N B; # 2.y ¢ B in € |y & vy in €l 1 By]]

yf
o (Cz)
ensures that y ¢ C;, as is required by our earlier choice of s, .

Note that in the process 7 we allow for y to be killed by C,. This in particular

Aem

Figure 5-3: Arm event centered around a point z € wfjn.

If the event in (5.14)) holds we know that at least one ‘deleted’ point z € ¢f777 connects
to Bf via two disconnected paths: once through the z component, and once through

the y component.

In particular, the event Arm,(t—s) should hold for at least one z € 1/15777. To apply the
Arm upper bound from Proposition [5.6| we will first have to apply the Mecke equation
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(in the reverse direction) to avoid problems arising from z or y being pivotal themselves.

Hence, we get the following bound:

A2 S .. To
2/_ / P[Co N Bf £ @,y B in €l |y < ¢ in €Y 0 B]| dyda
aanT 6'LnBT z

7 _
=E > 1{CmB§#®,yHB§in77<az>,y<—>¢fzv7,}
L {z,y}CnNo" B,
#
<E Z Z 1{Arm,(Bi—s(2))}
_{m,y}Cnﬁ@i”BT Zew?z nts

Let us write X := | N 0™ B,|. The summand in the above display does not depend
on z or y. Hence, we can replace the sum by the number of (unordered) Poisson pairs
in 7 N 0™ B, which is equal to %(X2 — X). Next, the point process 1/)?177 N B can be
dominated by a Poisson point process of density A1p,. We then use the Mecke equation
to find:

#
E Z Z 1{Arm,(Bi—s(2))}

z,yeEnNI™ B, ZG'IZ)?I nNBs

—E| Y (- X) 1H{Arm (B ()
zewfmnts

<A| E [XQI{ArmZ(Bt,S(s))}] ds.
Bs

In the above inequality we use the fact that | N 9" B,| increases by 1 whenever z €
0" B,. We simply add 1 to X no matter the location of z. Furthermore, we bound
%(X 24+ X) < X2. Next, we apply the Holder inequality with parameters a € [0, 0o] and
ﬁﬁ Then, using Lemma to bound the Poisson moment in the second inequality:

A / E [X21{Arm.(Bi_s(s))}] ds < A / E[X 2]« P[Arm.(By_(2))] "= ds

s

X 2c a=1
< /\3’BSH8mBT|2eXp ()\WWB|> IP’[ATm(t/Q)] o,

(5.15)
where we use the fact that P[Arm,(Bi—s(z))] < P[Arm(t/2)]. Remember

Recall that (5.15)) is an upper bound on the (integral of the) numerator of (5.12]).

“When applying Holder’s inequality we need to be careful to include the mark of z in E.
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Together with the lower bound on the denominator (5.13)) we find that

P[Arm(t/2)] s .

9 \3p-2d—2 ¢d
P[U(r,t)¢] < cgexp ( a ) s

MO B,| ) infy yep, Ts(z,y)

Since |Bs| =< s% and 0™ B,| < r?~1, this gives us the desired bound. [ |

We do not yet have a good lower bound on inf, ,ecp, Tor(z,y). We will construct a
lower bound via an iterative procedure based on the following lemma. We introduce
the following notation for some z € R%: let U A(7,t; z) represent the uniqueness event

Ux(r,t) centered at z.

We remind the reader that (A2|) refers to the existence of some ¢,6 > 0 such that
P[B; > o0] > 1 —c¢s? holds for all s > 1. The following lemma (along with the proof)
is adapted from [CMT24].

Lemma 5.11. Let A > \. and § > 0 as in (A2). Let m,u € R>q such that m > u'*9.
Then

PlU(u,m)¢] < = Va,b € B,i1s5 : Tam(a,b) > 4.

ud

Remark 5.12. Note that Lemma [5.11] does not hold if we can choose the mark of a and

b in general, as it might be possible to choose arbitrarily unfavorable marks.

Figure 5-4: Gluing via paths to infinity and uniqueness events. The black dots represent
the balls B, /(z;). The gray arrows represent paths to infinity. The blue paths in
between the gray paths exist due to uniqueness. For sake of clarity I did not include
all paths.
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Proof. Let ¢,§ > 0 be as in ((A2)). We can assume furthers, without loss of generality,
that ¢ is sufficiently small such that 8(X)243" > 4§ holds.

Now let a,b € Byits. Let n = [4u’] < 5u’. We write z; := a+%(b—a) for all i € [0,n].
Then z¢ = a and x,, = b. Then [|z; — z;41]]2 < 5.

We assume that a <> oo and b <> co and B, s(x;) <> oo for all i € [1,n —1]. Then
either a <> b in By, (as demonstrated in Figure , or, for some i € [1,n — 1] we
find that U(u, m;x;)¢ occurs. Thus, by the union bound:

Pla <> 00,b <> 00,Vi : By, j5(w;) > 00] < Tam(a,b) + Z P[U(u, m; z;)¢].
i€[1,n—1]

Note that for any q €0, ] and p > 0 it holds that (1—¢q)? > 479. By FKG-inequality,
Assumption (A2]), and the assumption that P[Uy(u, m)°] < %:

Tam(a, b) > Pla <> o0]P[b > oo|P[B,, /5 < 00]™t — (n — 1D)P[U(u, m)“]
O(N2(1 — 25003 — 3uPP[Uy (u, m)<]
O(N)24732 _ 35,

v

v

Thus, by our assumption on § that 9()\)24*302[S > 40,

?zm(a, b) > 4.

The approach in the following proof is to use Lemma together with Lemma [5.11
Lemma gives an upper bound on U (r, )¢, which we may use in order to lower bound
7Ta(x,y) with Lemma Each time we increase the scale, allowing us to iterate this

procedure and get a bound on any (sufficiently large) scale.

Proof of Proposition[5.8. Let ug be the volume of the unit ball in d dimensions. Let
5 € (0, ) so that it is compatible with Lemma Let us restate Lemma replacing
P[Arm(t/2)] with the bound from Corollary

9 2d—2 .d .
P[UA(ﬁt)C}SCeXp( 2 ) U :

a—1
log(t) 2a t™ 2a . 5.16
/\,U/drd_l ian,yeBr Ts(2,y) Og( ) ( )

Now choose s = 2r. We write e(r,t) := (Mg log(t)rdfl)_%. Then we choose o =
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e(r,t)7! and drop the —e(r,t) exponent on the log(t) term to find:

D=

log(t)2t—2 <D (5.17)

PUA(r,1)°] < Cexp ( log(t) ) od3d—2

Aﬂdrdil infz,yEBr Tor (fL‘, y)

As we are using the above equation repeatedly we let me remind the reader that we
assume that t > 2r and t > e.

We will now define rg and ty to ensure our induction step later works. First, we

fix 7o > 2 such that £(r0,ré+5) < %. Next, we can find ¢y > max(ré“L‘s,Q(C/dQ)%)

such that P[Uy(ro,t0)¢] < % by (5.17). We can now use Lemma |5.11| to find that
0

- T

infqpep | s T2t (a,b) > 6.
"o

We further require that for all ¢ > ¢y it holds that

log(t
exp ( Og(dzl> , (5.18)
ALdro

which is possible by inspection. This bound also holds for larger values of ry3. In

ool
IS

ts > log(t)

particular, it will hold for subsequent induction steps.

We now choose 11 := Té+6. We use (5.16) with r = r1, s = 2ty and t = t; = t{*
together with inf, pep |, ;5 T2ty (a, b) > 0. It follows that
i)

-1 log(t — L pe(r -+ -1
P[U(r1, t1)9] < [tl Sexp< Loglh). dl_)1> 1og<t1)é] [tl 16l 1’“)} [tl 162d§r%d_2t3} t
ALary
<0

D=

To clarify, the ¢;
We inspect each individually going from left to right.

term is split into four parts, each separated by a square bracket.

_1
1. By (5.18)) we ensured that ¢, ® dominates the log terms, and so the first bracket
is less than one.
2. We reserve tl_l/ 1% ¢5 cancel the ti(”’tl) term, thus the second bracket is less than

one.

3. We use t}/w = t3?, which must be larger than 2d(C/52)r§2d_2)t6[ by definition.

This term gives use the extra 9.

Finally, this leaves us with tl%'
1
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Now we repeat this argument to bootstrap this bound. Since tl% < t%, we can use
1

1
Lemma [5.11| again to find that inf,pep |, ; T2t (a,b) > 0. For general, for i € N we

define r; := rilff and t; := t?f‘{. And so, by the same reasoning as above, we find:

0

P[UA(ri, t:)] < 7

We can choose y < ltogg((;dfg) so that r; < exp(log(t;)X) = h(t;). [

Corollary 5.13. Let A > A.. Let 69 > 0 be as in (A2)). Then for all R sufficiently
large and all x,y € Br it holds that

T2R(x7 y) > d.

Proof. We write Proposition as P[Ux(r, H(r))°] < coH(r)~Y/*. We first check the
conditions of Lemma Let 6 > 0. We require that H(r) > r!¥9. Since H grows

superpolynomially this condition holds for sufficiently large 7.

Next we require that P[Uy(r, H(r))] < coH(r)~1/* < r%. By rearranging this equation
we can see that again it must hold for sufficiently large r» due to the superpolynomial
growth of H.

Now we may apply Lemma and the statement holds. |
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Chapter 6

Grimmett-Marstrand

A very important result in percolation theory is the that in the supercritical phase
percolation should still occur in sufficiently large subsets of space. This was first char-
acterized by Grimmett and Marstrand in [GM90]. They show that in the supercritical

phase we still percolate in sufficiently big slabs of the form Slab; := R? x [—[,1]472.

In this chapter we will prove two versions of this fact, first a qualitative version which
follows quickly from the results of the previous chapters. Next, a quantitative version,

which provides more insight into how large the slab needs to be.

For the rest of this chapter we assume (A2|) and that d > 3.

6.1 Statement

We will take a slightly different approach here more focused on developing techniques
related to sprinkling. This will have the advantage of giving us a quantitative result,

rather than just an existence result.

We take the ideas in the following section from [DKT21|, in particular we use the
‘seedless’ renormalization scheme. We will use ¢ to refer to any strictly positive constant
to simplify notation. To make this argument work we need to additionally assume that

1) is spherically symmetric.

Theorem 6.1 (Quantitative Grimmett-Marstrand). Fiz d > 3 and A > 0. Assume
that v spherically symmetric. There exists a constant C = C(d) > 0 such that the
following holds. Assume for somee >0 and 1 < k < K <n < N < oo such that

K < &2n the following assumptions hold:
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(a) fiuPlom © ASlp(dm) > ¢
(b) P[A <> A{] > 1 —exp(—1/e¢)
(c) PlUx(k, K)¢] < exp(—1/e) and P[Ux(n, N)¢] < exp(—1/¢).

Then, we have

Prxicelo Slaban, 0] > g/2.

Note that for A > A, we can fulfill these assumptions. We get @ immediately by, i.e.
by choosing ¢ € (0,0(\)/2). To ensure holds we choose k such that

(A2)
P[A < A% 9 1—ck™® >1—exp(—1/e)

holds. We can solve for k by taking the (—d)-th root of ck~% < exp(—1/¢) which yields
k> cl/o exp(3).

Recall that we defined H(r) = exp(log(r)'/X) for x € (0, 1).

We now set (k, K,n, N) := (k, H(k), H*(k), H3(k)). Thus, by Proposition , we have
—-1/4 1
PlU(k, K)] < ea K~ H* < ey exp <log(k:)1/><) < eXp(_g)7

which can be rearranged to yield k& > exp(4X(1/e — log(cz2))X).

Finally, choosing

k = max {01/5 exp (;g) exp (4X(1/e — 1og(02))><)}

ensures items (]ED and hold.

Lemma 6.2 (Square root trick). Let n € Z>1. Let Ay,..., A, be increasing events.

Then,
1/n

max P[4;|>1—-|1-P A;
1€[1,n] [ ] 16%1{1]]

Proof. By the FKG inequality, and the fact that A{ are decreasing, we know that

Pl J 4l<1-]] IP’[Aﬂgl—(l— max IP[A,-])n.

i€[[1,n] i€[[1,n] €l
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The result follows by solving for max;cp; ,,) P[4i]. [ |

6.1.1 Points

We remind the reader of the notation A, := [-n,n]?. We will require two lemmas

before we proceed with the proof of Theorem

1. Lemma shows that (with the same conditions as Theorem [6.1)) a sufficiently
large set of inserted vertices will, with high probability, connect to one of the

quarter-faces of A, (defined below).

2. Lemmal 6.5 says that if a connection event with inserted vertices holds with suffi-
ciently high probability, then an associated connection event involving sprinkling
will also hold with high probability.

In the upcoming proofs we will use the following notation for the sake of compactness:
(A& By ={A& Bin¢n K},

where K C R% and A and B are either point sets, point measures or subsets of R¢.

We will combine these lemmas to perform the ‘seedless’ renormalization described in
[DKT21]. Let i € [1,d]. We define the i-th ‘quarter-face’ of Ay as:

FZ(N) = {(xl,...,xd) |l‘i€ [N,N+1),Vj7éi:xj S [0,N+1)}.

Note that the name ‘quarter-face’ is only accurate in 3d. In d dimensions each face has

24=1 ‘quarters’, meaning that the hypercube has 2¢d quarter-faces in total.

Lemma 6.3. Assume @, (]ED and hold. Then there ezists some ¢, 3 > 0 (depending
only on v and d) such that for a.e.- C ~ C(n°,0) with diam(C') > n we have for all i

P[C FSiAEN Fi(N) in {pUC]] > 1 — Bexp(—c/e).
Note, here we ‘overlay’ C and 7.

Proof. Throughout this proof we reserve the symbols ¢, ¢a, ... to refer to strictly pos-

itive constants that depend only on d and .

By the [Square root trick] and assumption (b)) we find that for all i € [1,d]:

P[Ar &% Fi(N)] > 1 — exp(—1/(2%e)). (6.1)

83



This is the only point where we require the assumption that ¢ is spherically symmetric.

We assume without loss of generality that C' C A,. This can be done as C' N A,
connecting to F;(N) implies that all of C' will still make the same connection. Consider
x1,...,2; € C such that Q; := x; + Agy1 are all disjoint and contained in A, ;. We
also define a smaller box @’ := x; + Ay. We can and do write [ = [¢1/€?] for some

constant ¢;. We define the following events

E; = {l‘j e Q;} N U)\(/{,K;$j)

By @ and together we have

PIE;] = Plz; < Qf] — PUA(K, K)]
>e—exp(—1/e) >¢/2.

Since each the events Ej; lives on Ax 1 + z;, they are independent, thus

P| | Ei| >21-(1—g/2) >1—2e7% >1-2¢e%/%,
jelii]

where we use 1 — x < e %.

Next we bound P[Bj], by observing that at least half of the faces of x; + A are outside
of Ay. It follows from (/6.1]) that

(6.1)
IP[BJ] <P [Q’ o (xj + antAN) N A?V] ? exp <_1> )

= J
By the union bound we find
P U Bj| <lexp L < exp(—és/e)
, T = 2dde ) — ’

JelLi]

where the last inequality uses the fact that [ < & /2 + 1. Now assume there exists at
least one i such that Ej\ B; occurs. Then we know that z; <> Qf and Q] <> A% (from

BJC) both happen. Furthermore, we know that these two paths must be connected. In
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particular C' <+ A%, occurs. And so:

PIC A >P | | E\B;| =P | |J E|-P| |J Bj| >1-27%".
Jelvi jelil jelL]

Finally, by the above display, (6.1)) and

P[C &% F(N)] > P[A, < Fi(N),C > AS, Ux(n, N)]
Z 1 - 166766/6)

for some 5 > 0. [ ]

Remark 6.4. By inspection of the above proof, in particular that we assume C' C Ay,

we can also see that we need to use at least one neighbor of C, thus
A .
Py n ¢ F;(N) in &[n]] > 1 — Bexp(—c/e).
This will allow us to use the result of Lemma [6.3] for Lemma [6.5] below.

For Lemma[6.3] to be useful we require a way to convert probabilities between ‘overlaid’
points and probabilities on £,. We want to be able to say that if some connection event
is very likely for a given point-set A that it continues to be likely if these points can

only connect to 7 via some extra sprinkling 7. This can be interpreted as ‘closing all
the edges of A’.

We will use the |[Stopping Set lemmal We remind the reader of the notation &[n, ']
defined in ([2.1)). It consists of the edges between 1 and 7’ and 7 and itself, but not 7’
and itself. The following we adapt from [DKT21, Lemma 10].

Lemma 6.5. For anyy >0, § € (0,1) and A > 0 there exists some > 0 (depending
on v,0 and A, but not €) such that for any € € (0,0) and any thinning function g with
compact support and any finite set A C X satisfying the following relation:

Plipn 4 gun in &[n]] > 1 — exp(—7/e), (6.2)

we have
P07 g in Elneay, 7)) > 10,

where ) ~ A—ppp and 1] ~ Ke-ppp.
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Proof. Let € > 0 so that (6.2]) holds. Note that

Plpitn < gun in €] = Py < gun in E[niay, vin)]

In words this means that it suffices to consider paths that start at a neighbor of A and

never return to any neighbor of A.

Furthermore, we can now see that we can sample 74, separately from ¥»An. To make
this explicit we introduce a new Poisson point process 7z, of (varying) intensity L > 0,

independent of everything else. We can then write

P [0 < g in €y, vin)] =P [vix ¢ gy in Enay, i) -

We define the following set of points that share an edge with A and are connected to

g« without using any other points that are connected to A:

Wr, = |{x € 1L | T~ A,z <> gan in €[N ay U{a:}]}‘

Let L > X and notice that if we take a A/L thinning of /27, that we recover 1A7,. In
particular, one way the connection event ¥A7y <+ g,n can fail is that W, < n for some

n > 1 and each of vertices die in the A/L-thinning. In symbols:

n—1
Pl  gun] > Py, < 1] (1 - 2) | (6.3)

On the other hand, one way the connection can take place for 127, is that Wy, > n

and at least one vertex survives a “=-thinning. In symbols, we get:

o | ke
The proof now follows by optimizing over n. We will see that n = L%Jr(/\*)

(but is not strictly optimal). This choice of n is found by taking the derivate of

suffices

1- % — (1 — %)™ and setting the result equal to 0, i.e. we ignore the mixed
L
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term from (6.4)). By substituting n in (6.4) and letting L — oo we find that

P [¢ifee <> gt in E[pay, Ve

—/Q’y+)\10g(%) *K’Y*H€10g(%)
>(1— 1-—
- ( exp< ke + A P ke + A

VK Alog(%5%) —re log(5)
>1- - 200N WA B
- exp< /@5—1—)\) (exp( KE + A +exp ke + A

1 T
We can bound the sum of exponentials by rewriting x = ¢, which gives x=+1 + .z~ =+1.

Using the weighted inequality of arithmetic and geometric means, i.e. ta + (1 —t)b >
1

a'b't witha =2,b=1and t = %H gives 277> > w=+1, which can be rearranged to

yield

xﬁﬂ + :Uifi%1 <2
for all x > 0. This inequality is sharp at x = 1.

Finally, by the above display, and using that e < § we find that:

A - As R
P [0 Tke <> gs1) i Engay, V1 ee]] = 1 — 2exp <—,ﬂ5+A> :

Choosing x as follows
—Alog(d/2) .
v+ dlog(d/2) —

is sufficient. [ |

6.1.2 Proof of Theorem [6.1]

Proof of Theorem [6.1] The overall structure of this proof will be to build an iterative
exploration of Slabsy by tiling it with overlapping boxes that we index with Z2. For

every x € Z? we write

A, =Nz + Ay and Ay = Nz + Asp.

Let 1 be a A-Poisson point process in Slabgy. For every z € Z2 we let 1, be a ke-
Poisson point process in 1~\z, where « is chosen later. The 7, are all independent of each
other and from 1. We will prove that the event o <> 0o in 7ot == 1 U (U, 72) U {0}
occurs with probability at least /2.

Fix any ordering of the edges F(Z?). Let ng := nU {o}. Let Ag := {0} and By := @.
Let t > 0 and X; := (A, By). To define Xy11 given X; we consider the next edge
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e € E(Z?), such that one endpoint is in A, and the other endpoint is in (A; U B;)¢. As

such, we view A; as the open cluster and B; as the boundary.

Let e be the next admissible edge and let  be the endpoint of e not in A; U By, then

(AyU{z},By) if o< Ay in e
(A4, BiU{z}) else '

N1 = Nt UM and Xip1 =

We have the following properties two properties:

® Tloo = UtZO Nt C Ntotal = Mo U UerQ Ny

e If X; percolates then o =% .
We now wish to prove P[X percolates | 0 <> AS in nU {o}] > 1/2.
We require the following classic result from [Gri99, Lemma 7.24].
Lemma 6.6. If for the random exploration X; = (A, By) there exists some q >
pSite(Z2) such that

P[Biy1 = B | Xo,...,Xt] > ¢q a.s. for all t > 0,

then P[|As| = 00] > ¢(q) > 0 where ¢(q) LZANY If |Aso| = 00 we say that the process
X percolates.

In the case where no admissible edge exists the condition of the above Lemma is
satisfied. Now let e and x be as before. Consider the cluster of o in each iteration
(C(ns,0))s<t, and let (Cs)s<¢ be an admissible (deterministic) choice for these random

clusters. We require

P[C; <> Ay in g, Uny | C(ng,0) = Cy] > gq.

We can not directly use the stopping set lemma here because the connection event we
are considering contains the cluster we need to remove for the stopping set lemma.

Instead we look to employ Lemma [6.3

By assumption x is a neighbor of some cube that our process has already reached. This
ensures that there is at least one box 2/ + Ax which shares a quarter face with our
target box A, such that diam(C; N A,/) > n. Furthermore, the box 2’ + Ay C Ay
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Figure 6-1: We can place a box around a point 2’ € C; such that at least one quarter
face of ' + Ay is contained in A,. The largest box represents A,.

Thus, by Lemma 6.3

P[ f’fn < Ay in Em4]] > 1 — Bexp(—c/e).

The above display fulfills the condition of Lemma [6.5] to get

Pyt ¢+ Ay in (M) (cyy Une] =2 1 —6.

By an application of the [Stopping Set lemmal we get

1-6< ]P)[ ftnx < Az in (nt)(Ct) U 77:0]
= P[C, +> A, through n, in 9, Un, | C(n,0) = Cy
=P[C, & Ay in g Un, | C(ne, 0) = Cy).

Now by Lemma [6.6] we are finished. |
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6.2 Improving Uniqueness

We can now apply the Grimmett-Marstrand result to get better bounds on the unique-
ness event U(r, R). The approach is to first establish a better bound on connection
within a box, and use that to ensure connection within an annulus via an ”orange

peeling” argument from [Gri99|.

For all t, L € R>; we define T;(L) to be [—t,#]9"! x [~ L, L]. The following lemma and
proof are adapted from [Gri99, Lemma 7.78]

Lemma 6.7. Let d > 3 and X\ > A.. There exist L € R>1 and a strictly positive
constant 6 = 6(\, L) such that

Plx <y in £9Y NTy(L)] > 6,

forall z,y € Tt,L(B—\L/a) and for allt > L.

Proof. Let ¢ = ﬁ. We define the slab Sy(L) := [~t,t]? x [~L, L]%~2. We first prove

that there exists some dg and L > 1 sufficiently large such that
Plz <> y in €Y N Sy(L)] > 0o, (6.5)

holds for all z,y € S;_r(qL).

Let QV¥(L) = [-L,0)? x [~L, L]%2, where ‘NE’ stands for northeast. We similarly
define QNW, QW Q5F. Since A > )., we may assume by Theorem that we can
find some L such that A > )\C(QNE(qL))E Let us write

NE
9::]P’[0M>oo] > 0.

Let s, > 0. We define GV¥(s,1) := QV¥(I) N Agy; to be the intersection of the NE
quadrant with a box. We define GNW, G" and G°F in an analogous manner. Let

HYE(s,1) = [, s+ x [s+1,s +1+1] x [-1,1]*2,
HNE(s ) i=[s+1,s+1+1] x [=1,s4+1] x [-1,1]972

be the upper and right exterior boundary respectively. We define H{V W H ﬁw, H iW,
HfW, HfE and HiE accordingly.

"By inspection of the proof and the fact that p$*®(Z2,) > 0.
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Figure 6-2: The left diagram shows the connection event in from the top. The
right diagram shows the same event from the side. The point y is shown in blue, and
the origin o is shown in black.

NE(qL)

NE s
Since {o L), oo} implies {Ujefr 30 LG, HNE(

s,qL)} we find by the union
bound and symmetry that

GNE(s,qL)
—

Plo HYP(s,qL)] > 6/2. (6.6)

Without loss of generality let y € S;_1.(¢L) such that y; < y2 < 0. Consider the event

that
NW (4
By = {o & gNW (1 qL))
SE(4_
N {o SR [gSE (1 qL)) (6.7)

y+GNF (t—L+|y1],qL)

n{y HYP (t— L+ |yl,qL)}-

In words, the above event ensures that the origin connects to the west side of the north-

west quadrant and the south side of the of southeast quadrant of S;_r(¢L). Further-

more, it ensures that y connects to the north side of the box. This event is illustrated
in Figure [6-2]

By geometry, the event E, ensures that the paths of y and o ‘cross’ somewhere in the
two-dimensional sense in the box [—t + L,t — L]?. By the nature of the MRCM the
closest vertices will not directly overlap, but they will be within a distance of 1 (again in
the two-dimensional sense). In the remaining d — 2 dimensions the maximum distance

is dictated by the thickness of the slab and is thus 3¢L in every dimension. Thus, by
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the Pythagorean theorem, the maximum distance that the cluster of y and the cluster
of o could be separated in the event is at most L.

There is a scenario where the paths do not have to cross, if y is sufficiently close to
the left side of the box that the left boundary of y + GNP (t — L + |y1|, qL) is outside
the inner slab S;_r(¢L). But this path can at most protrude by ¢L, and so the above
argument holds. Note that although we assumed y; < y2 < 0, we can find an event E,

for all y € S;_r.(¢L) by making the needed adjustments.

The paths crossing is not sufficient for o and y to connect. We can ensure connectivity

%, which can

using a sprinkling argument. Suppose the event E, holds for N =
be achieved by fixing a sufficiently large L. Then, there is a strictly positive, albeit
small, probability that the closest points of the clusters C, and C, connect via only
the sprinkled points of intensity A\ — X. More precisely, for L fixed as above, the
infimum inf, yep, , Pl &4y in EyY\ ) =: 61 is strictly positive Furthermore, as

the connection is only along sprinkled points, it is independent of F,.

Hence, by independence of the sprinkling event, the FKG inequality, and we find

1
IP’[y —o0€e&¥’n St(L)] > 51(59)3 =: 409 > 0.

Finally, to recover ([6.5) we use the FKG inequality again, together with our bound on
the Arm event from Corollary Then,

Plz + y in £€9Y N Sy(L)] > P[E,, E,, Arm,(L)°]
> 63 — PlArm(L)),

where we use the union bound and then the FKG inequality to get the final line. Hence,
by Corollary and choosing L sufficiently large, we find that (6.5)) holds.

2This can be demonstrated by explicitly constructing a path. See e.g. [FPR11] for a similar
construction.
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Let x = (x1,...,2q) € Ty_1,(qL). We construct the following sequence of points

sSo=2x
s1=(0,22,23,...,24)
S9 = (0707«773;-~-7517d)
sq—3=(0,...,0,24-2,2q—1,%q)

Sd—2 = (0, ,0).

We claim that

Plsj <> sj41 in £%+ NTy(L)] > do for j € [0,d — 3] . (6.8)

First note that

Sj,Sj+1 € (07 s ,0,$j+3, s ,$d2,xd_1,0)

+[—qL,qLy x [t + Lt — L]* x [—qL,qL]* 772

The region on the right is a rotated and shifted version of S;_r(gL) that is a subset
of Ty(L). We can similarly place the larger slab Sy(L) around the same point in the
above display, and it is also a subset of T;(L). Hence, follows from our earlier

claim (6.5).

Hence, by FKG and Corollary
ey 2(d—2)
Plz < yin &Y NT,(L)] > 6, — (2d — 3)P[Arm(L)].
Hence, we can find some L sufficiently large that the Lemma holds. [ ]

The following lemma and proof are adapted from |Gri99, Lemma 7.89]

Lemma 6.8. Let A > A.. Then there exists some a,r9 € Rs1 and ¢ € Rsg such that
for all v > 1o it holds that

PU(r,ar)] > 1 — exp(—cr).

Proof. The core of this proof relies on an “orange peeling” argument from [Gri99]. We

work on a modified version of the uniqueness with d-cubes instead of balls to better
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apply Theorem We can do this without problem by inscribing and circumscribing
a ball around the relevant cubes, which will yield the same result up to some constant

factors.

We start in a similar manner to Lemma We consider z,y € 9" B,. We define the
event

U(r,ar;z,y) i= {x ¢ A,y ¢ A,z S5 y).

Let ¢ be as in Lemma We pick L and § = §(A, L) like in Lemma and L large
enough such that
62 — (d+ 1)P[Arm((1 — ¢)L)] > «, (6.9)

for some ¢ > 0.

Then we can write for all » > 3L
ar=r+ (24 q)LK

for some K > 0.

Let 7’ :=7+ (1 +¢)L. For k € [0, | K|] and z,y € 9™A, we define

Ar+k( +q)L
A(z,y) ={z & Af"+k(2+q)L7y A Ai/+k(2+q)px %& y},

to be the event that z and y leave the box A4 (2447, Without connecting in the
smaller box A, yj24¢ - These boxes are chosen so that we may use Lemma The
intuition is that Ag(z,y) is the event that ensures that the components of z and y

reach the next layer without connecting in the current layer. Notice that
U(’I”, ar; x>y)c - ALKJ—l(xay) - AI_KJ—Q(:va) c---C Al(.ﬁlf, y)a

and so,
LK]-1

]P)[ALKjfl(x7y)] < H ]P)[Ak(xay) | Ak—l(xay)]‘
k=1

We claim that
PlAg(z,y) | Ap—1(z,y)] <1-17,

for some & > 0. This implies
PlAk (z,y)] < (1 -85,
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Figure 6-3: The blue inner ring represents Dy and the thin brown outer ring represents
Dj.. The first ‘peel’ of the orange. Note the overshoot of the slabs is ¢L.

We define
Dy = A jp24q)L—qL \ Mr(h=1)(249)L
Dy, = Apryk24q)L \ Ay k(2+q)L—qL>
such that D), C Dj. The event Ag(x,y) ensures that  and y reach D) without

connecting in Dj. With an eye towards using Lemma D;, will play the role of
T;(L), whereas Dj. will play the role of T;_r,(qL).

Now for any z € nN A, we define Vj(2) to be the set of all u € D;. Notice that on the
event Ayy1(z,y) the sets Vi(z) and Vi (y) are non-empty and disjoint.

In other words, given that the event Ay_1(z,y) occurs, the event Ag(z,y) can occur
only if for all u € Vi_1(z) and v € Vi_1(y) we have that u <—[;)£> v. This is a necessary,
but not sufficient condition (which is exactly what we require for the following upper
bound).

We can see that

P[Ak(xa y) | Akfl(xay)] < sup{]P’[u “ v in ém,y N Dk] U,V € D;c—l}'

Dy .
Now we use Lemma to prove that Plu < v in £%°] > §9*2 for all u,v € D, _,.

The region Dy can be thought of as the union of 2d overlapping slices, where each

d—1

slice is a shifted and rotated version of T, (L) = [—7k,rg]* " x [—=L, L], where 1}, :=
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r—qL + k(2 + q)L. We also define 7, := r — L 4+ k(2 + ¢)L, which corresponds to
Trk—L(qL)'

Let zp, ..., zq be the following collection of points in A,,. For each i € [0, d] the first ¢
entries of z; are given by 7 and the final d — i entries are given by —7%. In particular

zZ0 = (—fk, ey —fk) and Zd = (fk, e ,’I:k).

For each consecutive pair z;, 211, there exists a copy of T, _1(¢L) in Dy containing

both z; and z;41. Hence,

P| () {zic1 e 2} [ Arme,((1—q)L)

ie[1,d] 1€[0,d]

>P| () {zi-1 ¢ 2}| — (d+1)P[Arm((1 - q)L)]
1€]1,d]

> §d (d+ 1)P[Arm((1 — q)L)],
where we first use the union bound and then FKG.

Hence, by the same procedure as in the above display and our assumptions on L in

, we find that

Plu <> v in €Y N D] > P |u > 20,0 <> 24, ﬂ {zi-1 & 2}, m Arm, (qL)°
ie1,d] 1€]0,d]

> 62 — (d+ 1)P[Arm((1 — q)L)] > c.

Note that we require the Arm events to ensure that the paths actually connect as it

would not be sufficient for u to connect to v only through one of the z;. |

6.3 Proof of Theorem [5.1]

To prove Theorem [5.1] we will require a lower bound on the probability that a randomly
placed point in A4 reaches a large ball By at the origin. We achieve this by chaining
together the previously defined uniqueness events with guarantees that the relevant

annuli are crossed.

6.3.1 Gluing paths

First we show that a uniformly randomly picked vertex in some box A; reaches a large

central ball with sufficiently high probability.
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Lemma 6.9. Let A > \.. Let € > 0. Then there exists a K > 0 and an ty > 0, such
that for all t > ty we have

PA[V; % Bl > 0()) — e,

where Vy is a uniformly picked point in Ay with a mark assigned by p.
We first need the following definitions.

Definition 6.10 (k-dependence). Let (X;),cza be a Bernoulliﬁ random field. For any
k € N we call X a k-dependent field if for all finite A, B C Z% such that all vertices
in A have a distance (say /) of at least k to all vertices in B, then the collections of

random variables (X,),c4 and (X, ),ecp are independent.

Definition 6.11 (Stochasic domination). Let (X;),cz¢ and (Yy),cze be two Bernoulli
random fields. We say say that X stochastically dominates Y if for every increasing
function f : {0,1}2" — [0, 00) it holds that E[f(X)] > E[f(Y)).

We will need the following Lemma as used in |[Pen03, Theorem 9.12] and originally
proved in [LSS97], see also |[Gri99, Theorem 7.65].

Lemma 6.12. Let e € (0,1/4), k € N and (X.),cz4 a k-dependent Bernoulli random
field. Then there exists some &' € (0,¢) such that if P[X, = 1] > 1 — ¢’ for all z € 79,
we find that (X,) stochastically dominates independent Bernoulli site percolation with

parameter 1 — €.

Lemma 6.13. Let € > 0. Then there exists some € > 0 such that the following holds.
Let (X.),cza be a (1 — ¢’)-Bernoulli site percolation. Then we have for all s > 1 and
all ve Ay NZE that

]P)[O (X2)NAs

v] >1—e. (6.10)

Proof of Lemma|6.13. This proof follows from a Peierls type argument. We first show
d

that if o &?A v then there must exist some ‘blocking set’ which prevents the connec-

tion. This step will be purely deterministic. We then estimate the size of this blocking

set, which in turn will give us a bound on the probability that o connects to v.

Let s > 0 and v € A;. Let w € {0, 1}Asmzd be a configuration. Suppose o <% v. Let
us call C' = C,(w) the set of sites that are connected to the origin. Now let D be the
connected component of v in A;NZ?\ C (i.e. ignoring the configuration of w). Finally,
we define CT := D¢ > C.

3i.e. {0, 1}-valued.
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Now, C* and D are disjoint connected sets whose union makes A, N Z%. Let A :=
D N o*™CT be all the sites in D which are adjacent to some site in CT. By [Pen03,
Lemma 9.6] we know that A is *—connectedﬂ Furthermore, all sites of A are vacant in
w and every possible path in A;NZ? from o to v uses at least one vertex in A. We call

any set fulfilling these three criteria a blocking set.

Therefore, the event o <% v is equivalent to the existence of a blocking set. It is
immediate that the cardinality |A| is greater than or equal to diams, A := max{||z —
Ylloo : x,y € A}. We claim that

doo (0, A) A doo (v, A)

diamoo A Z 4 ’

(6.11)

where d, is the distance in the oco-norm.

Suppose the claim is false, then 4 diams A < doo(A, 0). Now let [0 be the smallest
d-cube which contains A. Naturally, diam., A = diam,, 0. Then by the triangle
inequality we find that

doo(0,00) > do (0, A) — diame, A

(6.12)
> 3diame A.

By the same argument we also find that do(v,J) > 3diam., A. This causes a contra-
diction against A being a blocking set as we can now construct a path from o to v that
avoids [J and thus A.

For this construction we can assume without loss of generality that all coordinates of
v = (v1,...,vq) are positive. For each permutation 7 of {1,2,...,d} we can define a
path ~, which starts at o and moves to v coordinate by coordinate according to the
ordering of 7. So for the first segment of the path ~, moves along coordinate (1) from

0 to Zﬂ(l)'

Let Q := [~k diamy A, k diamy, A]]d. Observe that by (6.12) A can not intersect Q3

or z + Q3. However, for any two distinct permutations 7 and 7’ it holds that

doo (V2 \ (Q3 U 2 + Q3), 7 \ (3 Uz + Q3)) > 3diams, A.

Hence, A can block at most one of these paths, and so our claim ((6.11]) holdsﬂ Further,
note that all of these paths will be fully contained in A, and hence the claim holds for

4Any two points in A can be joined by a path in A of f-adjacent vertices.
5This is where we use that A is *-connected.
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all s.

Finally, let € > 0. Then
Plo «+» z] = P[3 a blocking set A]

< ZIP’[EI a blocking set A, |A| = k].
k=1

We can now use (6.11)) to observe that the blocking set must have at least one vertex
in Q4 or z + @4, each of which has at most k¢ vertices. We know by [Pen03, Lemma,
9.3] that for any given starting point there are at most (23d_1)k x-connected sets of

cardinality k. Finally, each vertex in A is open with probability /. Hence,

oo
Plo «» z] Z (2k%) 23d hk,
k=1

Hence, we can find an €’ > 0 small enough so that (6.10)) holds. [ |

In the following proof we will write Uy (s, ¢; z) for the event Uy (s,t) centered at z € R%.
We remind the reader that Assumption (A2) states that for every K > 0 it holds that
P\[Bg ¢+ o0] > 1 —cK™°.

Proof of Lemmal[6.9 Let € > 0. We now want to define a dependent site percolation
on KZ% that is coupled to our MRCM in such a way that we may use Lemmas
and We will say that a site z € KZ% is open if

{Bk(2) <> B} N Uy (K, aK;2)

holds. This guarantees that if we have a sequence of neighboring open sites in KZ¢
that we can find a corresponding path in the MRCM. More explicitly, for any path
(Zz‘){zo C K72 of open sites such that ||z; — z;41]1 < K for all i < f — 1, we can find
a corresponding path from B (z9) to Bg(zf) in sz:o B.xk(zi) in &x. Note that by the
union bound, Assumption and Lemma

P[z open] > 1 — K~ — exp(—cK),
which can be chosen arbitrarily close to 1. We can now define a Bernoulli random field

(X2)pexze on KZ4. In particular, by Lemmas and we can choose K7 € Rxg

As .
sufficiently large so that P[v % 0] > 1 — ¢/3 holds uniformly over s and v.
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Next we consider the random point V;. One way for {V; <ﬂ> Bk} to occur, is to
‘connect’ V; to the Bernoulli site percolation system on KZ? Then we can use our
connection result on the site percolation. Let us write mg5a(V;) to denote the nearest
site in the lattice KZ% to V;. Let R = (1 ++/d/2)K. The ball Bg(V;) will contain the
ball B (7gz4(V;)). Thus, the events {V; <» oo} and Uy(R, aR;V};) will ensure that V;
connects to By (mg74(V2)). Fix Ko € R>q so that P[U\(R,aR)] >1—¢/3

Now we fix K = max{K;, K}. We still have to ensure that our path stays within
our chosen box A;. We fix tg := %. Now, for every t > ty it holds that the
probability that V; is within distance aR of the boundary is less than /3. By the

union bound we find that:

d
PV, ¢ Bi] > PV, ¢ 00, Ux(R, aR; Vi), Vi € Ay gy, e (Vi) €55 0,

>0\ —¢/3—¢/3—¢/3.

Hence the result holds. [ |

Remark 6.14. The weaker bound on Uy given in Proposition does not suffice to
prove the above Lemma. The problem occurs as the outer ball grows too fast to utilize
the renormalization argument. In particular, the dependence of the random Bernoulli

field grows unbounded as R — co.

6.3.2 Proof of Theorem 5.1

We essentially restate the proof given in [Pen22|.

Proof of Theorem [5.1] Assume A > A.. Let ¢ > 0 and choose K > 0 such that P[Bg <
oo] > 1—¢, P[Vy <> Bg] > 0(\) —e and P[U\(K,aK)] > 1 — ¢, using Lemma and

Lemma [6.8 for the latter two. Consider the sum

No:= > Uz Bg in §[A]}
zENNAs
The idea is that Li(As) C N, with high probability. Let Vi and Wy be uniformly
distributed points in A,. By the Mecke formula we write E[N,] = \(2s)?P[V JEEN Bg].
Thus,
lim inf s 2E[N,] > \(0 — ¢).

S$—00
Next, let
Nyi= > HlC(mnAy)| > s,

ZGW)JTAS
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be the number of vertices in components of size at least s!/2

we find that E[N!] = \(25)?P[|Cy. (n"* N A4)| > s'/2]. Thus,

. Using the Mecke formula

lim (25) 9E[N!] = ).

§—00

Using the Mecke formula for double sums we find that
E[NJ(N] = 1)] = N(25)P(|Cv, (0" N AG)| = 872, [Cw, (= N AL)| > 17,

Notice that the two events in the above display are independent whenever V; and W
have a distance of more than 2s'/2. The probability that Vi and W, are closer than

—d/2

251/2 is of order s . Hence,

lim (2s) 29E[N/(N] — 1)] = 262,

S§—00

which in particular means that (2s)"?N’ — A in L? and hence in probability.

We see by a simple coupling that (Ns — N{); < 1(Bg, 1/2) must hold. It follows that
sT9E[(Ns — N!)1] = 0 as s — oo. Hence,

limsup E[s~¢(N’: — N,).] = limsup E[s"¢(N. — N,)] < Ae

5§—00 §—00
By Markov’s inequality, limsup,_, . P[s~4(N’! — Ny) > /2] < Ae!/2. Tt follows that

lim sup P[s_st <\ — 261/2]

5—00

<limsup (]P’[sidN; <A — 2]+ P[sT4(N, — N's) < —51/2}) < Ael/?

5—00

By our choice of K it holds that P[U)(K,aK)] > 1 —¢e. If s is sufficiently large and
Ux(K,aK) holds we find that L; > Ny — n\(Bak), since all points in N outside By g
must lie in the same component. Therefore,

lim sup P[(2s)"%L; < A0 — 3e'/%]

§—00

< lim sup(P[(25) "N, < A0 — 2e'] + P[(25) " “n(Bax) > £'/%] + P[UA(K, aK)])
5§—00
<Al 4e
Conversely,

P[(25) ULy > A0 +¢)] < P[(25)7IN! > A0 + )] == 0.
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This with the previous display shows s~%L; LNV}

If (25)9N(0 4 ) > s'/2 and Ly + Ly > (25)%\(0 + ¢) then either N’ > (25)\(0 + ¢) or
Ly + 52 > (25)2\(0 + ). Hence, P[(25)"%(Ly + L) > A(0 +¢)] — 0. It follows that
(25)9Ly 5 0. u
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