
Large Components in the Random

Connection Model

submitted by

Niclas Küpper
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Summary

We explore the Marked Random Connection Model (MRCM) in the subcritical and

supercritical regimes. The behavior of Large Components will be used to guide our

exploration.

In the subcritical regime we show that large components occupy a vanishing fraction of

the observation window. We do this by studying the correlation length, which describes

the tail behavior of components, and is an object of interest in its own right.

In the supercritical regime we show that the largest component occupies a strictly pos-

itive fraction of the observation window. Our analysis will require various ‘uniqueness’

statements, which ensure that distant clusters are indeed connected. We prove the

Grimmett-Marstrand theorem for the MRCM to help us sharpen our uniqueness state-

ments, which we can then employ to prove the desired result about large components.
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Notation and Terminology

Symbol Description

R The set of real numbers.

N The set of natural numbers (including 0).

Z The set of integers.

R≥0 The set of positive elements of R.
[[a, b]] The collection of integers {a, a+ 1, . . . , b− 1, b}.
P The probability measure.

E The expected value.

ppp(X,µ) The law of the Poisson point process on a space X with

intensity measure µ.

η Standard symbol for a Poisson point process.

ψ Symbol used for the connection function.

1{·} Indicator function.

(M, ρ) The mark space with the associated probability measure.

X The space Rd ×M.

XM The space Rd ×M , for some subset M ⊆M.

Λt The box [−t, t]d ×M with side-length 2t.

Λt The box [−t, t]d with side-length 2t.

Br The ball of radius r ∈ R≥0.
Zψ

∫∫∫
Rd×M2 ψ(y; a, b)dyρ

⊗2(d(a, b)). λZψ is the expected num-

ber of neighbors for a typical vertex.

Z∞ψ ess supa∈M
∫∫

Rd×M ψ(y; a, b)dyρ
⊗2(db).

ξ[η] The random connection model driven by η. Written simply

as ξ when η is clear from context.

ξ[η, η′] The random connection model with addition edges between

η and η′, but not η′ and itself.
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Symbol Description

ξ[η; η′] The random connection model ξ[η] with η′ overlaid, but no

additional edges.

C(x, ξ) The connected component of x in ξ. We also write Cx when

ξ is clear from context.

θ(λ) The probability that an inserted point at the origin o is con-

nected to the infinite cluster. We refer to it as the ‘percolation

probability’.

λc The critical intensity. The infimum over all λ such that

θ(λ) > 0.

τ(x, y) The probability that two inserted points x and y belong to

the same cluster in ξ[ηx,y]. Also referred to as the ‘two-point

function’.

τ(x, y) The probability that the inserted points x and y connect to

the same cluster in ξ[η]. Also referred to as the ‘restricted

two-point function’.

∂inK The internal boundary of the set K ⊆ Rd given by ∂inK :=

{x ∈ K | d(x,Kc) ≤ 1}.
∂extK The external boundary of the set K ⊆ Rd given by ∂extK :=

{x ∈ Kc | d(x,K) ≤ 1}.
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Chapter 1

Introduction

1.1 History & Motivation

Random spatial models serve as fundamental frameworks for understanding a diverse

range of phenomena, from epidemiological spread and material phase transitions to

the structure of social networks and communication systems. The common thread

amongst these models is the emergence of non-trivial large-scale behavior arising solely

from local (random) rules of interaction. A particularly significant emergent behavior

is the phase transition, where only a small change in parameters lead to dramatic shifts

in global system properties.

The first rigorous study of such models dates back to Ernst Ising. In his PhD thesis

in 1925, Ising considered a model of ferromagnetism, where up and down ‘spins’1 are

placed on the one-dimensional lattice Z, with a temperature parameter T controlling

the interaction strength. Ising proved that in one dimension there is no phase tran-

sition. He incorrectly conjectured that his model displays no phase transition in any

dimension, a claim later disproven by Peierls in 1936 [Pei36] for the two-dimensional

case. In particular, it holds true that for all dimensions d ≥ 2 there exists a critical

temperature Tc > 0 which divides the parameter-space into a supercritical region where

magnetization occurs and a subcritical region where magnetization does not occur2.

The first rigorous mathematical treatment of a variety of percolation systems was done

by Broadbent and Hammersley in 1957 [BH57]. This is, in particularly, the first paper

1Each spin was represented as a +1 or −1.
2Conventionally, statistical physicists work with inverse temperature β = 1/T . In addition to being

mathematically convenient it helps align terminology: β > βc refers to supercritical and vice versa.
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to consider what we now call Bernoulli bond percolation. Instead of temperature this

model considers a graph whose edges (or bonds) are open with some probability p ∈
[0, 1]. In their ground-breaking paper they relate percolation to self-avoiding random

walks and use this to show that a non-trivial critical parameter pc ∈ (0, 1) exists. The

Bernoulli bond percolation was extremely important as a model as it is possibly the

simplest geometric model exhibiting a phase transition.

Continuing this trajectory, Gilbert [Gil61] was the first to investigate continuum perco-

lation models with mathematical rigor in 1961. Gilbert introduced what is now known

as the Gilbert disk model, where points are randomly distributed in a plane according

to a Poisson point process with intensity λ, and pairs of points are connected if they

lie within a specified distance of each other. Gilbert proves the existence of a critical

intensity on the plane, and thus a phase transition. Further, he manages to bound the

critical value from below using arguments from branching process theory.

The first generalization to what we now call the Random Connection Model (RCM)

was first considered by Penrose [Pen91] in 1991. Unlike the Gilbert model, where con-

nections between points are deterministic given their relative Euclidean distances, the

RCM allows for extra randomness to determine the existence of an edge. This gener-

alization expanded the model’s applicability to real-world systems where connectivity

depends on multiple factors beyond simple proximity. Penrose shows, amongst other

things, that under some mild assumptions the model is non-trivial.

A further generalization to the RCM is the Marked Random Connection Model (MRCM)

which allows for a variety of types. This is used to integrate multiple types of devices

into the same model, where each possible pair of devices changes the probability of

connection. While various instances of this model have been studied (see Section 3.1)

at this level of generality the MRCM was only introduced in [DH22] in 2022. The past

decade has seen substantial advances in the understanding the RCM (and its various

generalizations). Researchers have developed sharp threshold results, more scaling laws

near criticality, and enhanced techniques for analyzing the model’s behavior in various

regimes (explored in the literature review in Chapter 3).

1.1.1 Some applications

The RCM, MRCM and continuum percolation models more generally have been used to

model a large variety of processes since their inception. Edgar Gilbert himself invented

the Gilbert disk model while at Bell Labs and had radio stations and epidemiology in

mind as possible targets [Gil61].

9



The RCM is fairly easy to generate while displaying various realistic properties that

other models lack, especially with respect to geometric aspects. Thus, it is used broadly

as a test for various tests for graph processing (see e.g. [Tos+16]). Properties of the

RCM have also been used for statistical estimators [SMj17].

Applications are also found in computer science [DD22] and epidemiology [Bra14]. The

model has proven particularly valuable in capturing the inherent randomness in both

node placement and connection establishment that characterizes these systems.

Figure 1-1: Two instances of the same MRCM (with three marks) at two different
scales. Largest component in each observation window is highlighted. Within the
highlighted component points are colored based on their mark.

The MRCM featured in Figure 1-1 will be used in all future figures as a representation

of the MRCM. I will give a short description of it here. It is a modification of AB

percolation. In essence, we have two marks (orange and blue), which can only connect

to each other but not themselves. And we have a green mark which is very rare, but

can connect to both orange and blue over long distances.

1.2 Thesis Aims

The process of generalizing models is an important way to better understand the limits

of known results and the effectiveness of our tools. Historically many gains have been

made by successful generalization. The aim of this thesis is to continue this tradition

by generalizing results and methods for the RCM and MRCM. This goal is guided by

the characterization of large components in the sub- and supercritical regimes.
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There are two main avenues of achieving these new developments. First, I extend meth-

ods which have previously been developed for less general models such as the Poisson

Boolean Model or the Random grain model. The other avenue is via ‘translating’ meth-

ods developed for discrete models, such as Bernoulli Bond Percolation or the Random

Cluster Model to the MRCM.

The thesis is structured as follows. In Chapter 2 I formally construct the MRCM

using independent edge markings as in [DH22]. We also consider ways of modifying

the MRCM via thinnings and added points. The reader is assumed to have a basic

understanding of the Poisson point process, but no knowledge of the RCM or MRCM

is required. I also define connected components, the percolation probability and the

critical intensity along with other quantities of interest.

In Chapter 3 we review previous results in the field, both giving an overview of the

recent history, and taking note of specific results which will be important to our efforts.

Further, I will state and prove fundamental theorems which are required to work with

the MRCM, most notably the Mecke equation, which converts sums over Poisson points

to integrals over the respective density, the Russo formula for interpreting derivatives

the Stopping set Lemma which will allow us to consider connected components of the

MRCM.

The ultimate goal of Chapters 4 & 5 is to completely characterize the behavior of large

components. I will use this goal as motivation to guide the results, but allow some

digressions for auxiliary results.

In Chapter 4 we will work with the MRCM in the subcritical phase. The key results

will be what well call ‘sharpness’. It is required to prove various properties of the

correlation length, including its existence. The correlation length will then help us

characterize large components by determining the ‘correct scale’ to view the model at.

The intuition for the subcritical phase lies mostly in the fact that large components

become exponentially unlikely in their size.

In Chapter 5 we will consider the MRCM in the supercritical phase. In order to char-

acterize large components in this phase we require ‘uniqueness’ results. By definition

of this phase it will be easy to find long paths. The main difficulty in the supercritical

phase is ensuring that multiple long paths actually connect to each other with high

probability. The uniqueness events allow us to ‘glue’ such long paths together.

In the final Chapter 6 we will use the tools developed in Chapter 5 to show a classic

result from Grimmett and Marstrand [GM90]. This result states that for any supercrit-
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ical intensity parameter λ we may find a sufficiently thick ‘slab’, which is only infinite

in two dimensions, in which we percolate. We use the Grimmett-Marstrand result to

sharpen our tools further, which will allow us to complete the characterization of large

components.

Note on Terminology Throughout this thesis, “I” refers to original contributions

and perspectives of the author, while “we” is used to include the reader in the mathe-

matical journey and for standard mathematical exposition.
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Chapter 2

The Random Connection Model

In this chapter we define the Marked Random Connection Model (MRCM). It is as-

sumed that the reader has some basic understanding of the Poisson point process. I

recommend [LP17] as a reference for Poisson point process. We will start by reviewing

notation regarding the Poisson point processes, before continuing to with the construc-

tion of the MRCM.

2.1 The Poisson Point Process

Let (X,X ) be an arbitrary measurable space. Let N(X) be the space of measures on

X taking values in N. Let N (X) be the associated σ-algebra. We will write ppp(X, µ)
for the law of the Poisson point process on some space X with intensity measure µ.

Let d ≥ 2 be an integer. Let (M,M, ρ) be a probability space. We call M the mark

space. Throughout this thesis we will be working on the space X = Rd ×M. Usually,

on this space, we will be working with a Poisson point process of uniform intensity

λ ∈ R≥0 (with respect to ν := Leb⊗ρ), in which case will write (by slight abuse of

notation) ηλ ∼ ppp(X, λ). We will on occasion drop the subscript to simplify notation.

Now let η ∼ ppp(X, λ). We will need to modify η by adding additional points. For any

point x ∈ X we define ηx := η + δx, where δx is the Dirac measure. The measure ηx

may be interpreted in several ways. First, it may be understood as conditioning on the

existence of a point at x: P[η ∈ · | η({x}) = 1] = P[ηx ∈ ·]. Note that η({x}) = 1 is

an event of probability zero and so the statement is not rigorous as written (see [LP17,

Proposition 9.5]). The second way of understanding the Palm distribution is as a shifted

Poisson point process. Since the Poisson point process has a uniform distribution it
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is a priori shift-invariant. However, we may choose a random shift, e.g. choosing the

nearest Poisson point to the location x and shifting it to x. The shifted version now

necessarily has a Poisson point at x, and thus has a Palm distribution. This property

is referred to as ‘The Extra Head Problem’ (see [LP17, Chapter 10]). Thus, we may

view o ∈ ηo as a ‘typical’ point.

In the same way, for a collection of points x1, . . . , xn ∈ X, we will define ηx1,...,xn as

η +
∑

i≤n δxi . Now the interpretation of the ‘typical’ point is no longer holds, but we

will see an interpretation of {x1, . . . , xn} as a possible instance of a cluster in the next

Chapter.

We will also require the factorial measure. For any µ ∈ N(X) of the form of µ =∑
i∈N δxi we define the m-th factorial measure

µ(m) :=

̸=∑
(i1,...,im)∈Nm

δ(xi1 ,...,xim ).

We will be able to safely assume that all the point processes we encounter are of the

above form (see [LP17, Corollary 3.7]). The m-factorial measure is the collection of all

m-tuples with no repeating points.

2.2 Construction of the MRCM

We are now ready to construct the MRCM. Fix a dimension d ≥ 2 and mark space M
with an associated probability measure ρ as in the previous section. We will be working

on X := Rd ×M. This construction follows [DH22] and [Hey+19].

We require a choice of connection function ψ : Rd ×M2 → [0, 1], which governs the

probability that two points in η form an edge based on their marks and their relative

position. Given two points xa, yb ∈ X, where xa = (x, a) and yb = (y, b) with x, y ∈ Rd

and a, b ∈ M we want xa and yb to form an edge with probability ψ(y − x; a, b). To

simplify notation we will also write ψ(y − x; a, b) = ψ(xa, yb), where we see ψ : X2 →
[0, 1].

Since we are constructing an undirected graph we require ψ to be symmetric in Rd,
meaning that for all a, b ∈ M and all x ∈ Rd we have ψ(x; a, b) = ψ(−x; b, a). The

choice of connection function can affect both the microscopic and macroscopic behavior

of the MRCM, and we will give various examples in Section 3.1. In this thesis we

restrict ourselves to the behavior of the MRCM with connection functions with bounded
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support.

For any set X we define X [2] as the space of all subsets of cardinality 2. We define the

MRCM via a random element ξ of N((Rd×M)[2]× [0, 1]) which we call an independent

edge marking following a convention by [Hey+19]. We sample it as follows.

Let η be a proper point process on X. We may choose an ordering of the vertices

so that η = (x0, x1, x2, . . . ), where xi = (xi,mi). This ordering does not effect the

distribution of the resulting MRCM and may thus be chosen freely. Next, we sample a

family of random variables (Ui,j)i,j∈N, where for each i, j ∈ N we have Ui,j ∼ Unif([0, 1])

independently of everything else. We then define ξ[η] as a point process on N((Rd ×
M)[2] × [0, 1]) as

ξ := ξ[η] := {({xi, xj}, Ui,j) | i < j} .

Throughout most of this thesis we work with the independent edge marking ξ[η] where

η ∼ ppp(X, ν) and ν := λLeb⊗ρ for some λ ≥ 0. In this case, we may write ξ := ξ[η].

We will use P for the law of ξ and use E for the associated expected value. It is

important to note that even though η is a Poisson point process, ξ is in general not a

Poisson point process. Each point in (Rd ×M)[2] × [0, 1] represents an edge, which are

strongly correlated.

For convenience we may also want to define the independent edge marking for point

processes µ defined on Rd. In this case ξ[µ] will simply refer to the independent edge

marking of the independent ρ-marking of µ (see [LP17, Definition 5.3]).

2.2.1 Adding points

For some n ∈ N and distinct points x−1, . . . , x−n ∈ Rd×M we want to define the MRCM

of ηx−1,...,x−n in such a way that we may remove (or add) any number of xi’s without

changing existing connections. We extend the sequence (Ui,j)i,j≥0 to (Ui,j)i,j≥−n. We

define the process ξx−1,...,x−n as

ξx−1,...,x−n [ηx−1,...,x−n ] := {({xi, xj}, Ui,j) | i ≤ j} .

As before we may not want to explicitly specify the marks. Thus for x−1, . . . , x−n ∈ Rd

we define

ξx−1,...,x−n := ξ(x−1,m−1),...,(x−n,m−n),
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and sample m−1, . . .m−n ∼ ρ independently. For the purpose of compressing notation

we may occasionally write

ξx−1,...,x−n := ξ[ηx−1,...,x−n ] := ξx−1,...,x−n [ηx−1,...,x−n ].

We interpret ξ as a graph in the following manner. The vertices are given by η =

(x0, x1, x2, . . . ). We say two vertices xi, xj ∈ η share an edge if Ui,j ≤ ψ(xi−xj ;mi,mj)

where w.l.o.g. i < j. In this case we write xi ∼ xj . Notice that once we have a

realization ξ, determining the graph is a completely deterministic operation.

It will be notationally convenient to not always distinguish between points x ∈ X and

x ∈ Rd with full rigor at all times. We shall point out the differences when they appear

and matter, and whenever reference is made to a point in Rd it should be assumed

that a mark is sampled for it accordingly. To help with notational efficiency I will on

occasion write the mark of a point as a subscript: xm = (x,m) ∈ X. It should be noted

that for any event A and x ∈ Rd it holds that:

P[ξx ∈ A] =
∫
M
P[ξxm ∈ A]ρ(dm).

2.2.2 Subsets

We define two variations of ξ, each of which is a subset of the possible edges. Let

µ, µ′ ⊂ X be two point processes. We define

ξ[µ, µ′] := {({x, y}, u) ∈ ξ[µ ∪ µ′] | x, y ∈ µ or x ∈ µ, y ∈ µ′} (2.1)

to be the independent edge marking which contains all edges with at least one endpoint

in µ. Note that the ordering matters. In particular, it does not contain any of the edges

which have both end points in µ′.

We also define

ξ[µ;µ′] := {({x, y}, u) ∈ ξ[µ ∪ µ′] | x, y ∈ µ or x, y ∈ µ′}

the set of edges which have both endpoints in µ or both endpoints in µ′. This will

be useful notation for considering connected components. Although this definition is

symmetric, we will usually interpret the first component µ as random, and the second

component µ′ as fixed.
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2.2.3 Thinnings

An important tool for the MRCM is the ability to precisely partition points based on

certain properties, in such a way that we may view each partition independently. We

can do this via thinnings.

We will require an additional mark on η for the required randomness. This can be

achieved by extending the mark space to M̃ := M × [0, 1] with probability measure

ρ⊗Unif([0, 1]).

Definition 2.1 (Thinnings). For any function f : X→ [0, 1] we define the f -thinning

of η as

f∗η := {(x,m, u) ∈ η | u ≤ f(x,m)}.

We will functions of the form f : X→ [0, 1] thinning functions.

For η1 and η2 independent copies of η notice that by the superposition principle we can

sample f∗η
1 and (1− f)∗η2 independently, and overlay them to recover a copy of η (in

distribution). One must be careful when working with thinnings as η \f∗η ̸= (1−f)∗η,
since the two sides rely on different sources of randomness. Equality does hold in

distribution.

One important family of thinning functions is defined for all locally finite sets A ⊂ X
(respectively A ⊂ Rd) and is the probability of a point x ∈ X connecting to A:

ψA(x) := P[x ∼ A in ξ[A ∪ {x}]] = 1−
∏
z∈A

(1− ψ(x, z)). (2.2)

We will also explicitly define a special thinned Poisson point process η⟨A⟩ := η \ ψA∗ η.
This is equal in distribution to the set {x ∈ η | x ≁ A in ξ[η∪A]}. When talking about

η⟨A⟩ we say that the vertices in ψA∗ η were ‘killed’ by A. Note that we have ψ
A
∗ η∪η⟨A⟩ = η

(by definition), where the union is disjoint. Note further that η⟨A⟩
d
= (1 − ψA)∗η, but

η⟨A⟩ ̸= (1− ψA)∗η.

We will differentiate between f∗η
x and f∗η ∪ {x}, where the former allows for x to be

killed, and the latter does not. Further note that if one would want to apply multiple

independent thinnings this can be achieved by repeating the above process, including

further extending the mark space.

For the purpose of compact notation we will not differentiate between points, sets and

vectors in the superscript ot ψ·, and it should be assumed that all sets and vectors are

‘unpacked’. As an example, for some x ∈ X, Y = {y1, . . . , yn} ⊂ X, and z⃗ ∈ Xk we
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write ψx,Y,z⃗ = ψ{x,y1,...,yn,z1,...,zk} for some n, k ∈ N.

2.3 Quantities of Interest

For the rest of this thesis we will work only with a connection function with bounded

support in Rd. We may, without loss of generality, assume that suppψ ⊂ B1×M2. To

see why, consider the scenario where suppψ ⊂ BR ×M2 for some R ∈ R>0. Then the

function x 7→ ψ(R · x; a, b) has support in the unit ball as desired for all a, b ∈ M. We

are required to modify the Poisson point process in tandem to ensure even scaling. We

choose η̃ = {x/R : x ∈ η}. This rescaled Poisson point process has intensity Rdλ.

We will use the notation

Zψ :=

∫∫∫
Rd×M2

ψ(y; a, b)dyρ⊗2(d(a, b)),

where ρ⊗k refers to the k-fold product with itself for some k ∈ N. We can interpret

λZψ as the expected number of neighbors of a typical point. We also define

Z∞ψ := ess sup
a∈M

∫∫
Rd×M

ψ(y; a, b)dyρ(db). (2.3)

It is immediately apparent that Z∞ψ ≥ Zψ. We can similarly interpret λZ∞ψ as the

upper bound on the expected number of neighbors given the mark of the origin.

By a slight abuse of notation, for points x ∈ η we will write x ∈ A for some A ⊂ Rd if

x ∈ A×M. Similarly, we will write η ∩A to be the (random) set {(x,m) ∈ η | x ∈ A}.
On occasion we may write ξ∩A to mean ξ[η∩A], for the purpose of simplifying notation.

Now that we have defined the MRCM we can define some important objects required to

reason about its behavior. First we say that there exists a path from x ∈ η to y ∈ η in a

realization ξ[η] if we can find a sequence of n distinct points x = z0, z1, z2, . . . , zn, zn+1 =

y such that for all i ∈ [[0, n]] we have zi ∼ zi+1. We write {x↔ y in ξ[η]} to denote the

event “there exists a path from x to y”. We will use the convention that if x = y then

x↔ y holds.

Definition 2.2 (Two-point function). We define the two-point function for x, y ∈ Rd

or x, y ∈ X as

τλ(x, y) := τ(x, y) := P[x↔ y in ξ[ηx,y]].
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We further define the restricted two-point function as

τλ(x, y) := P[x↔ ψy∗η in ξ[ηx]], (2.4)

i.e. the probability that x reaches a neighbor of y. It can also be interpreted as the

probability that x and y connect via at least one other point in η. We can see that τ

is symmetric in x and y. It is immediate that τ ≥ τλ ≥ τ − ψ.

Definition 2.3. For a measurable subset A ⊂ X we write {x ↔ A in ξ[η]} if there

exists some y ∈ η ∩A such that x↔ y. Similarly, for A,B ⊂ X, we write {A↔ B} in
ξ[η] if there exist x ∈ η ∩ A and y ∈ η ∩ B such that x ↔ y holds. Note that by our

convention, if there exists some x ∈ η ∩A ∩B then A↔ B holds.

For marks we define a similar connection event. For a measurable subset M ⊆ M and

x ∈ η we write {x ↔ M in ξ[η]} if there exists some y ∈ η such that x connects to y

and y has its mark in M , including x itself.

If we can find an arbitrarily long path of distinct points from x we write x ↔ ∞ in

ξ[η]. Similarly, for some A ⊂ X, we write A ↔ ∞ if there exists some x ∈ η ∩ A such

that x↔∞.

Definition 2.4 (Connected Components). We define the connected component of a

vertex x ∈ η as follows.

C(x, ξ) := {y ∈ η | x↔ y}.

We may also consider the connected component of a region A ⊂ Rd, in which case we

write:

C(A, ξ) := {y ∈ η | A↔ y} =
⋃

x∈η∩A
C(x, ξ).

Note that C(A, ξ) is in general not a connected component. Finally, it will be convenient

to define Cx := C(x, ξx) as the connected component of the added vertex x ∈ X (or

x ∈ Rd in which case the mark is sampled randomly from ρ).

For all r ∈ R≥0 we define the box of radius r to be Λr := [−r, r]d ×M ⊂ X. Similarly

we define Λr := [−r, r]d ⊂ Rd. For all r ∈ Rgeq0 we define the ball of radius r to be Br.

The percolation probability is one of the most important quantities across all of sta-

tistical physics. Together with the r-percolation probability it helps characterize many

important behaviors.

Definition 2.5 (Percolation probability). Let r ∈ R≥0 and m ∈ M. We define the
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r-percolation probability as

θmr (λ) := θmr (λ, ψ) := P[om ↔ Λcr in ξ
o].

We define the percolation probability as

θm(λ) := θm(λ, ψ) := P[om ↔∞ in ξo].

We write θ(λ) =
∫
M θ

m(λ)ρ(dm), and analogously for θr(λ).

Remark 2.6. Note that the choice of reaching the complement of the box Λr is somewhat

arbitrary. Any other shape such as the ball Br would work just as well. Indeed the

limit to θ(λ) will be the same regardless, as long as your chosen family of shapes is

sufficiently nice.

Remark 2.7. It is straightforward to show that limr→∞ θr(λ) = θ(λ). The r-percolation

probability is monotonically decreasing in r and bounded from below by 0, ensuring

the limit exists. The quantity θ(λ) can also be interpreted as the probability that the

origin is connected to the unique infinite component, should it exist. Uniqueness of the

infinite component is established in [MR96] for the RCM. For the MRCM it was shown

in [CL24].

Remark 2.8. By coupling ξλ in λ, which is performed in Lemma 4.6, it can be easily

shown that θ(λ) is non-strictly increasing in λ.

The percolation probability has two distinct phases in λ. The subcritical phase where

θ(λ) = 0, and the supercritical phase where θ(λ) > 0.

Definition 2.9 (Critical Parameter). The critical parameter λc is defined as

λc = λc(ψ) = inf{λ | θ(λ) > 0}.

A value of λ is said to be subcritical if λ < λc. We define inf ∅ =∞, so if ψ ≡ 0, then

λc =∞.

The critical parameter is extraordinarily important. It captures the most important

behavior of statistical physics models. This thesis only studies the model below and

above the critical threshold, however the behavior at criticality is of great interest, but

typically difficult to study.

Remark 2.10. It is not clear that λc is non-trivial, meaning that λc ∈ (0,∞). We will

cover this in the Literature Review. It is, however, clear that θ(λ) > 0 implies the
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existence of an infinite component. It is less clear that λ < λc implies E[|Co|] < ∞.

Indeed, we will prove this in Chapter 4. At criticality it is expected that θ(λ) = 0 and

E[|Co|] =∞.

We can observe similar non-trivial behavior when considering the symmetric simple

random walk (Xi)i≥0 on Z. It is well know that Xi is recurrent, meaning that no matter

where it starts it will return to 0 ∈ Z in finite time with probability 1. However, the

expected return time is ∞.
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Chapter 3

Literature Review

We start with a brief survey of the various models that are covered by the Marked

Random Connection Model (MRCM). This will hopefully aid with the intuition for

later sections and chapters.

3.1 Examples of the MRCM

The MRCM is a very general model than can capture a large variety of different be-

haviors. I will present some instances of the MRCM which have been are of interest.

These are useful to keep in mind as we proceed.

We will divide this exposition of models into hard and soft. We call a model hard if

connections are purely determined by the relative location of points and their marks,

but no other randomness. If extra randomness is required to determine the edges, we

call the model soft.

3.1.1 Hard Models

First, let us mention the simplest model, which is the Poisson Boolean model of constant

radius, also referred to as the Gilbert graph. We let | · |2 denote the standard L2-norm

on Rd. It can be understood to have the connection function ψ(x) = 1{|x|2 ≤ 1}. This
model is by far the best understood.

The first generalization of the Gilbert graph was allowing the radii to vary. In this case

we choose M = R≥0 and along with some distribution ρ. We write marks as subscripts.

The connection function is then ψ(xr, ys) = 1{|x − y|2 ≤ r + s}. For this model to

22



be non-trivial it is required that E[Rd] < ∞, where R ∼ ρ, although it is common to

consider stronger moment assumptions, or even bounded radii. See [MR96].

Grain models are the most general of the hard models. The mark space is the space

of all compact sets containing the origin. If K,L are compact subsets of Rd, then we

write ψ(xK , yL) = 1{x+K ∩ y+L ̸= ∅}. See [Zie16] for an exploration of this model.

AB percolation is a modification of any of the above models. In AB percolation we

consider the mark space M̃ = {A,B} (in addition to any other marks) and only allow

connections between points of different marks. See [IY12] [Pen14]. Of course, AB

percolation can also be performed on soft models.

3.1.2 Soft Models

The tools required for tackling the soft models have only been developed more recently.

As mentioned before, the first of these models to be studied was the RCM in [Pen91].

One instance of the RCM of interest is first sampling a hard model, and then performing

Bernoulli bond percolation on the resulting random graph, this was studied by [Pen22]

and [Lic+23]. This can also be interpreted as using the connection function ψ(x, y) =

p1{|y−x|2 ≤ 1}, for some parameter p ∈ (0, 1). Note that this principle can be applied

to any model. Moreover, we can find a critical value pbondc analogous to our critical

λc. It was shown in [FPR11] that this critical value is strictly smaller than the critical

value for site percolation performed on the RCM, i.e. psitec > pbondc . This is consistent

with previous results on graphs of bounded degree [GS98].

One particular model of interest is the weight-dependent RCM (introduced in [Gra+22])

which is usually written with mark space M = [0, 1]. This model depends on a non-

increasing integrable profile function p : R≥0 → [0, 1] and a kernel g : (0, 1)× (0, 1)→
R≥0. Then ψ(xt, ys) = p(g(t, s)|x − y|d). This model is of particular interest when

studying long range models, i.e. models where the connection distance has a polynomial

tail, and hence long range connections become important to the dynamics. See also

[Gra+19].

3.2 Overview of previous results

We start by going through fundamental results necessary for understanding any statis-

tical physics model. We start with uniqueness and sharpness. We will then continue

to recent work which is more directly relevant to this thesis. Finally, we will state

preliminary lemmas that are required throughout the rest of this thesis.
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This thesis builds on recent work in both discrete and continuum percolation. We first

go through historical advances in continuum models. Then, we look at some results

specific to large components. We then look at some recent results for the MRCM.

Finally, we cover the results in discrete models which are of importance to us.

3.2.1 Historical results for Continuum Models

As mentioned in Chapter 1, Penrose introduced the RCM [Pen91] in 1991. In this

first paper Penrose shows that the critical intensity in non-trivial. Furthermore, and

importantly for our purposes, he derives a formula for the probability that an added

point connects to a cluster of cardinality k. I will generalize this to the MRCM and

present a new proof in Chapter 4.

One foundational text for continuum models is Meester and Roy’s Continuum Per-

colation [MR96]. Meester and Roy largely work with the Poisson Boolean model (of

varying radius), proving standard results. For our purposes we are interested in their

work on the RCM. They show the agreement of two separate definitions of criticality,

one given by the percolation probability θ(λ) (aligning with our Definition 2.9) and the

other given by the expected size of the component at the origin E[|Co|]. They also show

the uniqueness of the infinite component when it exists. Their proof makes use of the

‘trifurcation’ argument introduced by Burton and Keane in [BK89].

Uniqueness of the infinite component for the RCM was first shown by Meester and Roy

(see [MR96]) using the Burton-Keane approach [BK89], where the key idea is the use of

‘trifurcation-points’. The approach of ‘trifurcation-points’ also works in the continuum.

For the MRCM uniqueness was shown in [CL24], which adapts ideas from [AKN87], in

particular deletion stability, to prove uniqueness.

3.2.2 Large components

Another important text is Penrose’s Random Geometric Graphs [Pen03]. Penrose shows

for the Poisson Boolean model of constant radius, i.e. ψ(x) = 1{|x| ≤ 1}, that the

largest component in a box Λt is of the order of the log(t) in the subcritical case. In

the supercritical case the largest component in Λt consists of a positive fraction θ(λ)

of all points in the box. We will prove these in the more general MRCM.

In the case where ψ is radially symmetric and decreasing Penrose proved in [Pen16]

that full connectivity (in a box) is governed by the probability of having isolated ver-

tices in the limit where the number of points goes to infinity, but the radius of the

connection function goes to zero. Furthermore, the number of isolated vertices can
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itself be approximated by a Poisson random variable.

Penrose showed in [Pen22] that the supercritical (λ > λc) largest component of the as

a fraction of all points converges to θ(λ) in probability for d = 2 for ψ decreasing with

bounded support. In the case where ψ(x) = p1{|x| ≤ 1} for some p ∈ (0, 1] Lichev,

Lodewijks, Mitsche and Schapira show in [Lic+23] that the largest component in the

supercritical SRGG converges to θ(λ) almost surely as a fraction of all points. They

further demonstrate that the critical parameters λc(p) and pc(λ) are inverses of the

other.

3.2.3 Recent advances for the (M)RCM

One open question is if the infinite cluster exists at criticality. This property is equiv-

alent to θ(λ) being continuous at λc
1. For discrete models such as Bernoulli bond

percolation on Z2 this was shown by Harris in 1960 [Har60], when taken together with

a later result by Kesten in 1980 [Kes80]. For a general survey of planar percolation see

[Gri99]. In high dimensions, namely d ≥ 19 the result was shown by Hara and Slade in

1994 using the Lace Expansion [HS94] (in particular they show ”mean-field behavior”).

Last and Ziesche show that the two-point function satisfies the Ornstein-Zernike equa-

tion [LZ17]. Later, Heydenreich van der Hofstad, Last and Matzke develop the lace

expansion for the two point function [Hey+19], which makes this relationship explicit,

this allows them to derive the triangle-condition (in sufficiently high dimensions). This

paper is important for our purposes due to the Stopping Set lemma which we will state

and prove later.

In general all models are least well understood at or near the critical value. One way

we try to understand the behavior of models near the critical value is with critical

exponents, each of which describe a certain aspect of the model behavior. It is conjec-

tured that the critical exponents are universal, meaning that they are independent of

the exact details / local rules of the model.

Dickson and Heydenreich prove in [DH22], under some mild technical assumptions,

that the ‘triangle condition’ holds in sufficiently high dimensions. Using the triangle

condition [CD24] show the existence (and calculate the values of) certain critical expo-

nents. For the RCM [DH24] develop an expansion of the critical value λc in the limit

as d → ∞. Relevant to this paper, [CD24] show the ‘mean-field lower bound’ half of

sharpness.

1As we will see it is easy to prove right-continuity, the difficulty comes in showing θ is left-continuous.
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3.2.4 Recent Advances in Discrete Models

More recently lace expansion result has since been generalized to graphs beyond Zd

such as [Ben+99] for Cayley graphs of non-amenable groups and [Hey+19] for the

Random Connection Model (in high dimensions). For low dimensions it was shown by

Duminil-Copin, Sidoravicius and Tassion in [DST16] that there is no infinite cluster at

criticality for ‘slabs’ of the form Z2 × {0, . . . , k}d−2.

The property sharpness originally referred to the coincidence of different definitions of

of criticality, one defined via the probability of an infinite path (as we have done in

Definition 2.9), and the other via the expected cluster size. This fact was independently

discovered by Aizenman and Barsky [AB87] and Menshikov [Men86]. Menshikov and

Sidorenko later showed the same result for Poisson models [MS88].

An important modern result on sharpness is [DT16] by Duminil-Copin and Tassion,

which greatly simplifies (and generalizes) the proof. In particular, [DT16] shows ‘ex-

ponential decay’ of the t-percolation probability (in t) in the subcritical case, and a

mean-field lower bound for the percolation probability in the supercritical case. For

the rest of this thesis ‘sharpness’ will refer to this pair of bounds on the percolation

probability.

This proof was adopted by Sebastian Ziesche to show sharpness for the germ model

in [Zie16]. In this thesis I generalize this proof to the more general Marked Random

Connection Model using methods from [Hey+19]. These new results will allow us to

generalize results on large components from [Pen03], [Pen22] and [Lic+23] to the RCM

and to dimensions d ≥ 2.

In [EST24] Easo, Severo and Tassion invert the classic Peirels argument to show pc < 1

is equivalent to at most exponential growth in the number of cutsets (sets of edges

separating the origin from infinity) in the size of the cutest.

In Chapter 5 we will state and prove that large components in the supercritical case

make up a θ(λ) proportion of all points. The key tools required to work in the supercrit-

ical regime are uniqueness statements which allow us to ensure that various crossings

of annuli are indeed the same component. We will adapt a lot of the work of [CMT23].

A fundamental result is an upper bound on the two-arm event. The two-arm event

occurs when there are two disjoint paths from the origin to the region outside a ball

centered at the origin.
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3.3 Fundamental Tools

In the following subsections we will be stating fundamental results required to work

with the MRCM. These are the Mecke formula, Russo’s formula and the Stopping set

Lemma. I will also provide a proof of the stopping set lemma, since we will use not

only the statement itself, but aspects of its proof in later sections.

3.3.1 Mecke formula

For this and all further sections we shall assume that our Poisson point process η has

density λLeb⊗ρ in X, for some constant λ ≥ 0. In particular, η is uniform on Euclidean

space.

A key tool which makes working with the MRCM tractable is the Mecke formula. In

words, the Mecke formula allows us to convert the expectation of a sum over Poisson

points into an integral with respect to a single point. We will first write out the gen-

eralized multivariate version where we sum over m-tuples, and then we will separately

consider the univariate version, which we will be using most of the time.

Let us write ν := λLeb⊗ρ.

Theorem 3.1 (Multivariate Mecke). Let ξλ = ξ[η] be a MRCM. Let k ≥ 1. Given a

nice function f : N((X×M)[2] × [0, 1])× Xk → R≥0. Then

E

 ∑
x⃗∈η(k)

f(ξ, x⃗)

 =

∫
Xk

E[f(ξx1,...,xk , x⃗)]ν⊗k(dx⃗),

where ν⊗k is the k-times product of the measure ν, and x⃗ = (x1, . . . , xk).

Remark 3.2. Depending on our needs we may not want to explicitly integrate over

possible marks in the expected value. By abuse of notation we will not, in general,

differentiate between various E.∫
Xk

E[f(ξx1,...,xk , x⃗)]dν⊗k(dx⃗) = λk
∫
Rdk

E[f(ξx1,...,xk , x)]dx.

On the LHS we explicitly integrate over the marks while on the RHS the integral over

the marks is carried out by the expected value.

In the special case where k = 1 we recover the univariate Mecke formula. As we will

use this form in the majority of cases it is worth stating separately.
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Theorem 3.3 (Univariate Mecke). Let ξλ be a MRCM. Given a nice function f :

N((X×M)[2] × [0, 1])× X→ R≥0. Then

E

∑
x⃗∈η

f(ξ, x)

 = λ

∫
X
E[f(ξx, x)]ν(dx).

If the sum is over a Palm process, the extra points are added on the RHS. For the

univariate Mecke equation this results in:

E

∑
x⃗∈ηz

f(ξ, x)

 = E[f(ξz, z)] +
∫
X
E[f(ξx, x)]ν(dx).

Proof of Multivariate Mecke. By [LP17, Theorem 4.4], we know the Multivariate Mecke

equation holds for the (marked) Poisson point process. We write Eη to refer to the

expected value with respect to the point process without the extra randomness from

the MRCM. Similarly, we write EUij to refer to the expected value with respect to the

MRCM. To extend to the MRCM we have to incorporate the extra randomness coming

from ξ. Then

E

 ∑
x⃗∈η(k)

f(ξ, x⃗)

 = E(Uij)

Eη
 ∑
x⃗∈η(k)

f(ξ, x⃗)


(Mecke for ppp) = E(Uij)

[
λk
∫
Xk

Eη
[
f(ξx⃗, x⃗)

]
ν⊗k(dx⃗)

]
(Fubini) = λk

∫
Xk

E[f(ξx⃗, x⃗)]ν⊗k(dx⃗).

One needs to be careful when separating the expected value E into EUijEη. The labels

i need to be assigned to the Poisson points consistently, e.g. by the distance from the

origin. ■

Going forward we will just write ‘dx’ when integrating over X for brevity.

3.3.2 Margulis-Russo Formula

This formula is standard on lattice models (see e.g. [Gri99]), and known for the Poisson

point process [LP17, Chapter 19]. It was expanded to the RCM in [LZ17, Theorem

3.2]. Their proof can be adapted to the MRCM mutatis mutandis.
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Let f : N(X[2] × [0, 1]) → R be a function. We say the function f lives on a Borel set

Λ ⊂ Rd if f(ξ[η ∩ Λ]) = f(ξ[η]) almost surely.

Theorem 3.4 (Margulis-Russo Formula). Assume f lives on some bounded Λ and

there exists some λ0 > 0 such that E[f(ξλ0)] <∞. For every λ ≤ λ0 we have

∂

∂λ
E[f(ξλ)] =

∫
Λ
E[f(ξxλ)− f(ξλ)]dx.

The Margulis-Russo formula is a fundamental result, which will allow us to construct a

differential inequality, and more generally unlocks the use of calculus for studying the

MRCM.

3.3.3 Stopping Set Lemma

The Stopping Set Lemma (introduced in [Hey+19]) is a central tool that we will use

liberally throughout this thesis. It will allow us to disintegrate along components of

the MRCM. Specifically, it allows us to work with P[ · | C = C] for some random

component C and an admissible deterministic point set C.2

Definition 3.5 (Admissible Set). We call a finite set C ⊂ X admissible if the proba-

bility that C is connected in ξ[C] is strictly positive. Let GC be the set of all possible

graphs on the vertices C such that the graph is connected. Then

g(C) := P[C is connected in ξ[C]] =
∑
G∈GC

∏
xy∈E(G)

ψ(x, y)
∏

xy ̸∈E(G)

(1− ψ(x, y)), (3.1)

where xy represents an edge with endpoints x and y.

The Stopping Set Lemma allows us to work with the modified point process η⟨C⟩ (de-

fined in Section 2.2) instead of ξx[ηx \ Cx]. Note that ηx \ Cx is not a Poisson point

process in general.

Lemma 3.6 (Stopping Set lemma). Let x ∈ Rd. Then

P[ξx[ηx \ Cx] ∈ · | Cx = C] = P[ξ[η⟨C⟩] ∈ ·] for P[Cx ∈ · ] a.e. C.

Let us first note that ηx \ Cx is not a Poisson point process.

Due to the centrality of this lemma and for completeness we will give the proof of

2Note that C = C may be an event of measure zero. However, conditioning on this event can be
made rigorous using the disintegration theorem. See for instance [Pac78].
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[Hey+19, Lemma 3.3] here. In particular, this proof includes details which will be of

importance in Chapter 5. The authors of [Hey+19] note that this proof is similar to

[MPS97, Proposition 2].

Proof. We write ξx[Cx] to refer to Cx with the edges. Notice that ξx[Cx] can be inter-

preted as a rooted tree with x as the root. Let η0 = {x}. We now iteratively construct

ξx[Cx]. For n ∈ N let ηn be the set of points in Cx with graph distance at most n from

the root x. Let C0 = η0 = {x}. We claim the following holds

E[f(ξx[η \ ηn], η0, . . . , ηn)]

=

∫
E[f(ξ[η⟨An−1⟩], A0, . . . , An)]P[(η0, . . . , ηn) ∈ d(A0, . . . , An)],

(3.2)

for all measurable f with suitable domain.

To continue we consider a modification of the MRCM ξ. Let µ ⊂ X be a point processes.

Let A ⊂ X be a locally finite set. Following the conventions from Section 2.2 write

ξ[µ,A] for the set of edges with at least one endpoint in µ (see (2.1)). We assert that

for n ∈ N:

E[f(ξx[η \ ηn, ηn \ ηn−1], η0, . . . , ηn)]

=

∫
E[f(ξ[η⟨An−1⟩, An \An−1], A0, . . . , An)]P[(η1, . . . , ηn) ∈ d(A1, . . . , An)],

(3.3)

for all non-negative measurable f with suitable domain. Note that this is a stronger

assertion than (3.2), because ξ[η⟨An−1⟩] ⊆ ξ[η⟨An−1⟩, An \An−1].

This is equivalent to stating that ξx[η \ ηn, ηn \ ηn−1] is equal to ξ[η⟨An−1⟩, An \ An−1]
in distribution given (η0, . . . , ηn) = (A0, . . . , An).

We prove (3.3) as follows. Let us define the following edge marking. Let h : Rd → [0,∞)

be measurable and let µ and µ′ be two independent Poisson point process with their

intensity given by h. Let A ⊂ Rd be a locally finite set. We define the following

independent edge marking ξ̃ := ξ[µ ∪ A]. Let µA be the set of points in µ directly

connecting to A in ξ̃. Observe that for each v ∈ µ the event that v ∼ A is independent

of all other connections in µ. In particular, µA
d
= ψA∗ µ

′ (we remind the reader of

Definition 2.1). Moreover,

(
ξ[µ \ µA, µA], µA

) d
=
(
ξ[µ′⟨A⟩, ψ

A
∗ µ
′], ψA∗ µ

′). (3.4)

This statement follows from marking and thinning theorems of Poisson point processes
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Figure 3-1: Two demonstrations of the iterative construction of a component. Vertices
are colored based on their graph distance to the origin (in black).

(see [LP17, Theorems 5.1 & 5.6]). It can also be seen directly by noticing that instead

of using the randomness from the Ui,j ’s from ξ[·] we are instead using the randomness

from the thinning. Furthermore, µ′⟨A⟩ and ψ
A
∗ µ
′ are independent.

We now apply (3.4) iteratively starting with A = A0 = {x} and µ = η. We construct

Ai iteratively. First, let A1 be the union of {x} and all neighbors of A0 = {x}. By

construction, it holds that ψx∗η
d
= A1 \A0. This gives (3.3) for n = 1:

E[f(ξx[η \ η1, η1 \ η0], η0, η1)] =
∫

E[f(ξ[η⟨x⟩, A1 \ {x}], {x}, A1)]P[η1 ∈ dA1].

Note that η1 \ η0
d
= ψ

{x}
∗ η. Now suppose (3.3) is true for n and let A1, . . . , An ⊂ X be

admissible locally finite sets. We apply (3.4) with µ = η⟨An−1⟩ and A = An \ An−1,
conditional on (η1, . . . , ηn) = (A1, . . . , An).

To see this, first note that the points directly connecting to An \An−1, but not to any

previous points, are exactly ηn+1 \ ηn. In symbols, we find that η
An\An−1

⟨An−1⟩ = ηn+1 \ ηn
given (η1, . . . , ηn) = (A1, . . . , An), by definition.

Given (η1, . . . , ηn) = (A1, . . . , An) we find

ξ[η \ ηn+1, ηn+1 \ ηn]
d
= ξ[(η⟨An−1⟩)⟨An\An−1⟩, ψ

A
∗ η⟨An−1⟩]. (3.5)
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We can see that (η⟨An−1⟩)⟨An\An−1⟩
d
= η⟨An⟩. This follows explicitly from:

(1− ψAn−1)(1− ψAn\An−1) =

 ∏
z∈An−1

1− ψz
 ∏

z∈An\An−1

1− ψz
 = 1− ψAn .

Similarly, we find that, ψ
An\An−1
∗ η⟨An−1⟩ = An+1 \An. And so (3.3) follows from (3.5).

Furthermore, this same argument shows that, conditionally on (ηk)k≤n, η \ ηn+1 and

ηn+1 \ ηn are independent Poisson point processes with intensity functions λ(1− ψηn)
and λψηn(1−ψηn−1), respectively. The intuition is that a Poisson point not connected

to ηn can not be in ηn+1. If a Poisson point is connected to ηn it has to additionally

not be connected to ηn−1, as those points have already been sampled.

This procedure allows us to iteratively sample components Cx by starting with η0 = {x}
and η−1 = ∅, and sampling ηn+1 \ ηn as an independent Poisson point process with

intensity λψηn(1− ψηn−1).3

By induction, integrability of ψ and

ψηn\ηn−1(·) ≤
∑

w∈ηn\ηn−1

ψ(·, w),

it follows that all ηn are finite almost surely. Equation (3.2) shows in particular that

E[f(ξx[η \ ηn], ηn)] =
∫

E[f(ξ[η⟨Cn−1⟩], Cn)]P[ξ
x[Cx] ∈ dC], (3.6)

where Cn refers to all vertices with graph distance at most n from x in Cx. Let η∞ :=

∪nηn denote the vertex set Cx. For any bounded Borel set, we have that |η∞∩B| = |ηn∩
B| for sufficiently large n. Note that ξx[η\ηn]↘ ξx[η\η∞] as n→∞. Therefore, if f is

a bounded function depending only on the values of ξx[η \ηn] and ηn on some bounded

and measurable set, then the left-hand side of (3.6) will converge to E[f(ξx[η\η∞], η∞)]

as n→∞.

Similarly, the integrand of the right-hand side converges. In particular,

E[f(ξx[η \ η∞], η∞)] =

∫
E[f(ξ[η⟨C⟩], C)]P[η∞ ∈ dC],

for non-negative f as described in the previous paragraph. This can then be extended

to general f by a monotone class argument. ■

3It follows from our definition that ψ∅ = 0.
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Chapter 4

The Subcritical Regime

The goal of this chapter is to prove statements about large components. The subcritical

regime in many ways easier to understand than the supercritical regime. The key fact

is that long connections become exponentially unlikely. To do so we will consider the

largest component in an observation window Λt.

4.1 Assumptions and Results

We borrow the following language from [CD24]. We start with the following assump-

tion. We first define, for a, b ∈M,

D(a, b) :=

∫
Rd

ψ(x; a, b)dx,

and for k ≥ 1

D(k)(a, b) :=

∫
Mk−1

k∏
j=1

D(cj−1, cj)ρ
⊗k−1(dc[[1,k−1]]),

where c0 = a and ck = b. Let B ⊂M be measurable. We know by the Mecke equation

that λ
∫
BD(a, b)ρ(db) is the expected number of direct connections made from (o, a) to

some point with a mark in B. Similarly, λk
∫
BD

(k)(a, b)ρ(db) is the expected number

of paths of length k that start at (o, a) and end with some mark in B. We will require

the following assumption:

ess sup
a∈M

sup
k≥1

ess inf
b∈M

D(k)(a, b) > 0. (A1)
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In words (A1) says that there exists some mark that connects to every other mark

in at most k steps for some k. This immediately implies that almost every mark can

connect to almost every other mark in at most 2k steps. In particular, it ensures that

for ρ-almost all marks m and any measurable subset M ⊂ M such that ρ(M) > 0 we

have that P[om ↔M ] > 0 (in the sense of Definition 2.3).

Assumption (A1) is not required for all results and in particular the main theorem

would still hold without it. The assumption ensures that our model can not be trivially

decomposed into two independent MRCMs. It will be explicitly mentioned whenever

(A1) is required.

It is worth remarking that (A1) does exclude some models which might be of interest.

An example could be given by ψ(x; a, b) = min(a, b)f(x), where the mark space M =

[0, 1], ρ is given by uniform distribution and f is a symmetric function of bounded

support.

Definition 4.1 (Largest Component). Let B ⊂ X. The size of the largest component

in ξλ ∩B, as measured by the number of vertices is denoted as L1(B, ξλ). When ξ are

clear from the context, we will simply write L1(B). In case of a tie the reader may

choose any rule to break ties such as by lexicographic ordering.

To be able to state the theorem we need to define the inverse correlation length. The

correlation length is a general concept throughout statistical physics and can be thought

of as the scale required to observe the effects of subcriticality (respectively supercriti-

cality). In our case it means that your observation window needs to be at least at the

scale of the correlation length to observe the exponential decay. This notion will be

made more rigorous in the proof of the main theorem of this chapter.

Definition 4.2 (Inverse Correlation length). Let m ∈ M. The m-inverse correlation

length for λ ∈ R>0 is defined as

ζm(λ) := lim
n→∞

− 1

n
logP[|Com | = n in ξomλ ] (C1)

= lim
n→∞

− 1

n
logP[n ≤ |Com | <∞ in ξomλ ]. (C2)

It is not immediately obvious that the limit (C1) exists or is equal to (C2). We also
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define the following variations

ζ(λ) := lim
n→∞

− 1

n
logP[|Co| = n in ξoλ]. (C3)

ζmin(λ) := ess inf
m∈M

ζm(λ). (C4)

We remark that P[|Co| = n in ξoλ] =
∫
M P[|Com | = n in ξomλ ]ρ(dm).

We will prove that ζ(λ) = ζmin(λ). Assuming (A1), we will further prove that for

ρ-almost-all m ∈ M is holds that ζm(λ) = ζ(λ). Note that if (A1) does not hold it

need not be true. The simplest counterexample is a two mark system where the marks

have no interaction.

Lemma 4.3 (ζ is well defined). The limit (C1) exists and is equal to (C2). The

limit (C3) exists and is equal to (C4). Furthermore, the inverse correlation length is

positive, decreasing and continuous for all λ < λc. As λ→ 0 we have ζm(λ)→∞.

Assuming (A1) it further holds that for almost all m ∈ M: ζm(λ) is equal to ζ(λ) for

all λ < λc.

To prove Lemma 4.3 we will require sharpness, and more generally the results of Section

4.3. The (inverse) correlation length is a key tool in the study of percolation theory.

We can now state the main theorem of this chapter.

Theorem 4.4 (Main Theorem: Large Components). Consider the MRCM with con-

nection function ψ having bounded support and subcritical intensity λ ∈ (0, λc). Then

|L1(ξλ ∩ Λs)|
log 2s

→ d · ζ(λ, ψ)−1 in probability,

as s→∞, where L1 is the largest component.

We can interpret the statement of Theorem 4.4 as saying that the largest component

in a box of volume V has on the order of log V points, where the right factor is exactly

the correlation length ζ−1.

To warm up we start with an auxiliary result.

4.2 Auxiliary Result

While the following result is not required to prove the main theorem, it might still be

of interest to the reader.
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Figure 4-1: The MRCM model in the subcritical regime. Same model as in Figure 1-1,
with a smaller intensity λ and a larger observation window. The largest component is
highlighted.

Lemma 4.5. The percolation probability θm(λ) is right-continuous in λ for every m ∈
M.

It follows immediately from the above lemma that θ(λ) is also right-continuous.

Proof. Let ε > 0. We have the following estimate for all N ∈ N:

1− θm(λ) =
∑
i≥1

P[|Com | = i in ξomλ ] ≥
N∑
i=1

P[|Com | = i in ξomλ ].

We choose Nm such that P[|Com | ≤ Nm] > 1 − θm(λ) − ε/2. Every term in the above

sum is differentiable (and therefore continuous) in λ (see [CL24], or [Pen91] for the

RCM). Hence, we may choose some δ > 0 so that for every λ′ ∈ (λ, λ+ δ) we find

Nm∑
i=1

P[|Com | = i in ξomλ′ ] ≥
Nm∑
i=1

P[|Com | = i in ξomλ ]− ε/2 ≥ 1− θm(λ)− ε.
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By our definition of Nm,

1− θm(λ′) = P[|Com | <∞ in ξomλ′ ] ≥
Nm∑
i=1

P[|Com | = i in ξomλ′ ] > 1− θm(λ)− ε.

It follows that θm(λ) ≤ θm(λ′) < θm(λ)+ε. Thus, θm(λ) is right-continuous everywhere

in λ. ■

For λ < λc proving left-continuity is immediate as θm(λ) = 0. Proving left-continuity

at the critical point λc is an open question in general. It is equivalent to the absence of

the infinite cluster at criticality, which has been solved for certain models in dimensions

2 and dimensions 11 and above. For the MRCM this result has been shown to hold in

sufficiently high dimensions [DH22].

Lemma 4.6. Let m ∈M and λ0 > λc. Then θm is left-continuous at λ0.

The following proof is adopted from [Dum18].

Proof. We know by [CL24] that the infinite component for the MRCM is unique when

it exists. Let λ0 > λc. We want to show that

lim
λ↗λ0

θm(λ) = θm(λ0).

Now we may create a coupling in λ by sampling our Poisson point process in the space

X×R≥0, with intensity measure LebR
d ×ρ× LebR≥0 . Then by first restricting to [0, λ]

and then projecting out the final dimension we recover a MRCM with intensity λ. Now

for λ > λc I will write C∞λ to refer to the unique infinite component.

Now assume that om ∼ C∞λ0 , but om ≁ C∞λ for all λ ∈ (λc, λ0). For this to be true there

would need to exist a Poisson point with value second mark value exactly λ0, which

has probability 0. Hence,

θm(λ0)− lim
λ↗λ0

θm(λ) ≤ P[∃z ∈ η : πR≥0(z) = λ0] = 0.

Since θ is increasing we find θm(λ0) = limλ↗λ0 θ
m(λ). ■

4.3 Sharpness

Our approach to proving sharpness relies on the method developed in [DT16] for lattice

percolation. Similarly to that paper, we define a functional φλ that takes a thinning
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function f : X→ [0, 1] and marks a, b ∈M as an input and returns a real number:

φλ(f ; a, b) := λ

∫
Rd

(1− f(xb))P[oa ↔ xb in ξ[f∗η ∪ {oa, xb}]]dx. (4.1)

We can be interpret
∫
M φλ(f ; a, b)ρ(db) as the expected number of points in η\f∗η that

can be reached from the origin with mark a only using points in f∗η. Indeed, by the

Mecke equation, and any measurable subset M ⊂M:

∫
M
φλ(f ; a, b)ρ(db) = E

 ∑
x∈η\f∗η
πM(x)∈M

1 {oa ↔ x in ξ[f∗η ∪ {oa}]}

 .

Let T be the set of thinning functions with compact support. We can now define a

new critical parameter

λ̃c := sup

{
λ ≥ 0 | ess sup

a∈M
inf
f∈T

∫
M
φλ(f ; a, b)ρ(db) < 1

}
.

Note that for the RCM it suffices to assume that there exists an f ∈ T such that the

above quantity is strictly less than 1.

The choice ess supa∈M inff∈T
∫
M φλ(f ; a, b)ρ(db) is not immediate. To make sense of it

notice that we may view φλ(f ; a, b) as the kernel for an operator. For any measurable

function h : M→ R write: ∫
M
φλ(f ; a, b)h(b)ρ(db)

Now ess supa∈M
∫
M φλ(f ; a, b)ρ(db) = ∥Φf∥1,∞. The 1,∞-norm is most convenient for

our purposes. For more reading on using operators to deal with marks see [CD24]. We

will not (explicitly) require operators for the rest of the thesis.

For any f ∈ T define the following quantity

Φ1,∞
λ (f) := ess sup

a∈M

∫
M
φλ(f ;m, b)ρ(da). (4.2)

Note that λ < λ̃c is equivalent to saying that there exists some f ∈ T such that

Φ1,∞
λ (f) < 1. Recall the definition of λc (Definition 2.9).

Theorem 4.7 (Sharpness). For any d ≥ 1 it holds that λ̃c = λc and
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(I) For all λ < λc there exists some c > 0 such that for all t

ess sup
m∈M

θmt (λ, ψ) ≤ e−ct.

(II) For all λ > λc we have

ess sup
m∈M

θm(λ, ψ) ≥ λ− λc
λ

.

Remark 4.8. In the case of the Random Connection Model (i.e. if |M| = 1) we get the

following stronger bound:

θ(λ) ≥ λ− λc
λ

.

Remark 4.9. We note that this theorem implies the original definition of sharpness, i.e.

that λc = λEc , where λ
E
c := sup{λ | E[|Co|] <∞}. It is immediate that λc ≥ λEc , as an

infinite path with positive probability implies that the expected value of the size of the

component of the origin is infinite. The other direction requires a bit more work. By

Lemma 4.19 we know that P[|Co| ≥ n] decays exponentially in n. Thus,

E[|Co|] =
∑
n≥1

P[|Co| ≥ n] ≤ C̃
∑
n≥1

exp(−c̃n) <∞.

Remark 4.10. Recall the definition of Z∞ψ from equation (2.3). By using the definition

of φλ we can recover a standard bound. By choosing f ≡ 0 we find

ess sup
a∈M

∫
M
φλ(f ; a, b)ρ(db) = λZ∞ψ and hence λc ≥

1

Z∞ψ
.

This shows that for any ψ with Z∞ψ ∈ (0,∞) we have λc > 0. If in addition we have

λc < ∞, as is the case for d ≥ 2 (see [CD24, Lemma 2.2]), then the MRCM has a

non-trivial phase transition.

We will need the following proposition from [Pen91] (see also [MR96, Proposition 6.2])

which was only proven for the RCM. It was also shown in the proof of [CD24, Lemma

3.4] for the MRCM.

Recall the definition of ψA from equation (2.2).

Proposition 4.11. Let m ∈M and n ∈ Z≥1. Let pmn be the probability that P[|Com | =
n]. Let g(z1, . . . , zk) be the probability that z1, . . . , zk are in one connected component
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as defined in equation (3.1). Then,

pmn+1 =
λn

n!

∫
Xn

g(om, x1, . . . , xn) exp

(
−λ
∫
X
ψom,x⃗(y)dy

)
dx⃗.

Proof. Notice that we can write

pmn+1 = E
[ ∑
{x1,...,xn}⊂η

1{(om, x1, . . . , xn) connected}

1{{om, x1, . . . , xn} ≁ η \ {x1, . . . , xn}}
]
,

where the sum over η explicitly does not contain o. The above equation holds because

in the event |Com | = n+1 there is exactly one such set {x1, . . . , xn} satisfying the stated

events. Otherwise, if |Com | ̸= n + 1, such a set does not exist. This corresponds to n!

ordered tuples in the factorial measure. Hence, by the Mecke equation

pn+1 =
λn

n!

∫
Xn

g(om, x1, . . . , xn)P[{om, x1, . . . , xn} ≁ η]dx⃗,

To determine if {om, x1, . . . , xn} ≁ η, notice that it is equivalent to asking if |ψom,x⃗∗ η| =
0. We know by standard Poisson point process theory that |ψom,x⃗∗ η| has a Poisson

distribution with intensity λ
∫
X ψ

om,x⃗(y)dy. Thus, the proposition holds. ■

Remark 4.12. By symmetry, we can also write

pmn+1 = λn
∫
Xn

1{x1 < · · · < xn}g(om, x1, . . . , xn) exp
(
−λ
∫
X
ψom,x⃗(y)dy

)
dx⃗,

where < refers to the lexicographic ordering (although any strict ordering of Rd would

work).

Before we can state the next lemma we need the following definition.

Definition 4.13. For z ∈ Rd let Sz : N
(
(X×M)[2] × [0, 1]

)
→ N

(
(X×M)[2] × [0, 1]

)
be the shift operator which sends each edge in ξ to the same edge translated by z.

We call a function T of the form T : X2 × N((X × M)[2] × [0, 1]) → [0,∞) a mass

transport map. We call a mass transport map T shift invariant if E[T (x, y; ξx,y)] =
E[T (x− z, y − z;S−zξx,y)] holds for all x, y ∈ X and z ∈ Rd.

The following is an adaptation of the mass transport principle.
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Lemma 4.14 (Mass Transport). Let T : X2×N((X×M)[2]× [0, 1])→ [0,∞) be a shift

invariant integrable mass transport map. Then,

E[
∑
x∈ηo

T (o, x; ξo)] = E[
∑
x∈ηo

T (x, o; ξo)]

The intuition for the mass transport principle is to view T (o, x) as a function which

‘sends mass’ from o to x. Therefore, the principle states that all the mass sent out

from o must in expectation be equal to all the mass received by o from other points.

For a subset M ⊂ M we use the notation oM to indicate that we sample the mark of

oM uniformly over M relative to ρ, this is equivalent to 1
ρ(M)

∫
M ·ρ(dm). We further

introduce the notation XM to denote Rd ×M for a subset M ⊆M.

Proof. We start by using the Mecke equation and translation invariance as follows

E

[∑
x∈ηo

T (o, x; ξo)

]
= λ

∫
X

∫
M
E[T (om, xl; ξom,xl)]ρ(dm)dxl + E[T (o, o; ξo)]

= λ

∫
X

∫
M
E[T (−xm, ol;S−xξ−xm,ol)]ρ(dm)dxl + E[T (o, o; ξo)].

Note that we have the extra E[T (o, o; ξo)] term since we are using Mecke on ηo.

By substituting xl 7→ −xl, Fubini (for swapping the integral over the marks), and

swapping the names of the marks, we find that

E

[∑
x∈ηo

T (o, x; ξo)

]
= λ

∫
X

∫
M
E[T (xl, om; ξxl,om)]ρ(dm)dxl + E[T (o, o; ξo)]

= E

[∑
x∈ηo

T (x, o; ξo)

]
,

where in the final line we use the Univariate Mecke in the opposite direction. ■

We can use the Mass Transport principle to ‘switch marks’ in the following way. Going

forward the ξ will be dropped from the T notation for compactness.

Corollary 4.15. Let A,B ⊆ M be measurable with ρ(A) > 0 and ρ(B) > 0. Let
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k ∈ Z≥1. Then

P[|CoA | = k, CoA∩XB ̸= ∅] =
ρ(B)

ρ(A)

E[|CoB ∩ XA| | |CoB | = k]

E[|CoA ∩ XB| | |CoA | = k, CoA ∩ XB ̸= ∅]
P[|CoB | = k].

Proof. We let A,B and k be as above. We now drop the independent edge marking ξ

from the notation of the transport map T for compactness. We choose

T (xm, yl) = 1{m ∈ A}1{l ∈ B}1{|Cxm | = k}1{Cxm ∩ XB ̸= ∅}1{xm ↔ yl}.

Then, by the definition of conditional expectation,

E

[∑
x∈ηo

T (o, x)

]
= E

1{o ∈ XA}1{|Co| = k}1{Co ∩ XB ̸= ∅}
∑

x∈ηo∩XB

1{o↔ x}


= ρ(A) P[|CoA | = k, CoA ∩ XB ̸= ∅] E[|CoA ∩ XB| | |CoA | = k, CoA ∩ XB ̸= ∅].

We now perform a similar calculation for E
[∑

x∈ηo T (x, o)
]
.

E

[∑
x∈ηo

T (x, o)

]

= E

[
1{o ∈ XB}

∑
x∈ηo

1{x ∈ XA}1{|Cx| = k}1{o↔ x}1{Cx ∩ XB ̸= ∅}

]
= ρ(B) P[|CoB | = k] E [|CoB ∩ XA| | 1{|CoB | = k}] ,

where we use the fact that if o and x are connected then Co = Cx. It follows immediately

that CoB ∩ XB can never be empty, since it always contains at least the origin. By

rearranging the result holds. ■

Remark 4.16. Other results can also be recovered from the Mass Transport by using

different choices of T (xm, yl). We again assume ρ(A) > 0 and ρ(B) > 0. If we choose

T (xm, yl) = 1{m ∈ A, l ∈ B, xm ↔ yl} we find that

E[|CoA ∩ XB|] =
ρ(B)

ρ(A)
E[|CoB ∩ XA|].

We can extend this example through additional conditions: T (xm, yl) = 1{m ∈ A, l ∈
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B, xm ↔ yl, |Cxm | = k}. We now find that

P[|CoA | = k] =
ρ(B)

ρ(A)

E[|CoB ∩XA| | |CoB | = k]

E[|CoA ∩XB| | |CoA | = k]
P[|CoB | = k].

As a final example, if we choose T (xm, yl) = 1{m ∈ A, l ∈ B, |Cxm | = k}1{xm↔yl}|Cxm∩XB | , we

find that

P[|CoA | = k, CoA ∩ XB ̸= ∅] =
ρ(B)

ρ(A)
E
[
1{|CoB | = k} |CoB ∩ XA|

|CoB ∩ XB|

]
,

where we use the convention that 0
0 = 0.

Remark 4.17. In all the above examples (including Corollary 4.15) one may replace all

‘= k’ with ‘≥ k’.

4.4 Proof of Sharpness

As stated we take the idea of using φ from [DT16]. This was first done in the continuum

by [Zie16] for a large class of bounded hard models. We extend this to bounded soft

models.

We will show items (I) and (II) for λ̃c. Then, the fact that λ̃c = λ follows immediately

by Remark 4.9. We will make use of the Stopping Set lemma. Let us write

θmt (λ) := P[om ↔ Λct in ξ
om [ηom ]],

for the t-percolation probability started from mark m ∈M.

4.4.1 Item I

Assume λ < λ̃c. Then, by definition, we can and do choose a thinning function f such

that ess supa∈M
∫
M φλ(f ; a, b)ρ(db) < 1. Choose L > 1 such that supp f ⊂ ΛL−1, so

that all vertices of f∗η lie in ΛL−1. Let m ∈ M. For the rest of this section we will

write Cm := C(om, ξ[f∗η ∪ {om}]). Let C be a finite subset of X, which is a possible

candidate for Cm. Given x ∈ X, remark that {om ↔ x in ξ[C ∪ {x}]} ∩ {Cm = C} is

exactly the same event as {x ∼ C} ∩ {Cm = C}, in particular, we remind the reader

that we do not resample the edges when we write ξ[C].

We remind the reader of the that we write dx to refer to Leb⊗ρ(d(x, a)), i.e. integration
over X.
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Let k ∈ N. The event {om ↔ ΛckL in ξomλ } holds if and only if there exists some

x ∈ η \ f∗η such that om ↔ x in ξ[f∗η ∪ {om, x}] and x ↔ ΛckL off Cm. Then, by

applying the Markov inequality followed by the Mecke equation we find that

θmkL(λ) ≤ E

 ∑
x∈η\f∗η

1{om ↔ x in ξom,x[f∗η ∪ {om, x}]}1{x↔ ΛckL off Cm}


= λ

∫
X
P[om ↔ x in ξom,x[f∗η ∪ {om, x}], x↔ ΛckL off Cm](1− f(x))dx

= λ

∫
X

∫
P[om ↔ x in ξom,x[C ∪ {x}], x↔ ΛckL in ξ[(η \ C) ∪ {x}] | Cm = C]

P[Cm ∈ dC](1− f(x))dx.

Notice that when conditioning on Cm = C the two events become independent. The

former depends only on the edges between C and x, while the latter only depends on

η \ C and the edges between itself and x. If x ̸∈ ΛL we have P[x ∼ C] = 0. Therefore,

for x ∈ ΛL, using the Stopping Set lemma, translation invariance and observing that

for a path starting at x to reach ΛckL it must first reach Λ(k−1)L(x)
c we bound

P[xa ↔ ΛckL in ξ[(η \ C) ∪ {xa}] | Cm = C] ≤ P[oa ↔ Λ(k−1)L in ξo]

≤ ess sup
b∈M

θb(k−1)L(λ),

where we now no longer have a dependence on the mark a. Applying this to the

inequality we find that

θmkL(λ) ≤ λ
∫
X

∫
P[om ↔ xa in ξ[C ∪ {xa}] | Cm = C]

× P[xa ↔ ΛckL in ξ[(η \ C) ∪ {xa}] | Cm = C]P[Cm ∈ dC](1− f(x))dxa

≤ λ
∫
X
P[om ↔ xa in ξ[Cm ∪ {xa}]](1− f(xa))dxa × ess sup

b∈M
θb(k−1)L(λ)

=

∫
M
φλ(f ;m, a)ρ(da)× ess sup

b∈M
θb(k−1)L(λ).

The final line is true simply by definition of Cm and φλ. We now take the ess sup over

m in order to allow for iteration. We also rewrite using (4.2).

ess sup
m∈M

θmkL(λ) ≤ Φ1,∞
λ (f)× ess sup

b
θb(k−1)L(λ).
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Now we can iterate to find that

ess sup
m∈M

θmkL(λ) ≤ e−ck,

where c = − log(Φ1,∞
λ (f)).

Together with the fact that θt is decreasing in t we have that item I holds for all λ < λ̃c.

4.4.2 Item II

We will prove item (II) via a differential inequality, again following [DT16]. Let λ > λc.

We show for all m ∈M and t ≥ 1 that,

d

dλ
θmt (λ) ≥ 1

λ

(
inf
f∈T

∫
M
φλ(f ;m, a)ρ(da)

)
(1− θmt (λ)). (4.3)

We shall say u ↔ v through x if every possible path from u to v passes through x,

for some u, v, x ∈ X. We apply the Stopping Set lemma to the ‘outside component’.

Write Dm = C(Λct , ξom) for the outside component (without x). We will denote possible

configurations of C(Λct , ξom) by C.

The first equality in the next display comes from the Margulis-Russo’s formula. We

then marginalize over possible configurations of Dm. Finally, we see that for om ↔ Λct

through x we require every path om ↔ x to avoid Dm, and for x to connect to Dm. In
symbols

d

dλ
θmt (λ, ψ)

=

∫
Λt+1

P[om ↔ Λct through x in ξom,x[η ∪ {om, x}]]dx

=

∫
Λt+1

∫
P[om ↔ Λct through x in ξom,x | Dm = C]P[Dm ∈ dC]dx

=

∫
Λt+1

∫
P[om ↔ x in ξom,x[(η \ C) ∪ {om, x}], x↔ Λct in ξ

x[ηx] | Dm = C]

1{om ̸∈ C}P[Dm ∈ dC]dx.

Next, we observe that om ↔ x and x↔ Λct in ξ
x[ηx] are conditionally independent, as

they rely on a disjoint set of edges. Then we will be able to apply the Stopping Set
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lemma1. We first define

Tt := {f : X→ [0, 1] measurable | supp(f) ⊂ Λt},

over which we will take an infimum. For x ∈ X let fC(x) be the probability that x ≁ C

and that x ̸∈ ΛCt so that (η \C | Dm = C) ∼ fC∗ η by the Stopping Set lemma. It holds

that fC(x) = (1− ψC(x))1{x ∈ Λt}. Hence, for all xa ∈ Λt

d

dλ
P[om ↔ Λct ] =

∫
Λt+1

∫
P[om ↔ xa in ξom,xa [(η \ C) ∪ {om, xa}] | Dm = C]

× P[xa ↔ Λct in ξ
xa [ηxa ] | Dm = C]1{om ̸∈ C}P[Dm ∈ dC]dxa

We will now be able to apply the Stopping Set lemma. Notice that

P[x↔ Λct in ξ
x[ηx] | Dm = C] = P[{x ∼ C} ∪ {x ∈ Λct}] = 1− fC(x).

Combining we get

d

dλ
P[om ↔ Λct ]

=

∫
Λt+1

∫
P[om ↔ xa in ξ[fC∗ η ∪ {om, xa}]](1− fC(xa))1{om ̸∈ C}P[Dm ∈ dC]dxa

≥ inf
f∈Tt

∫
Λt+1

∫
P[om ↔ xa in ξ[f∗η ∪ {om, xa}]](1− f(xa))1{om ̸∈ C}P[Dm ∈ dC]dxa.

In the last line we may take the infimum over Tt since supp(fC) ⊂ Λt and so fC ∈ Tt.

We can expand the domain of integration to all of Rd, since the integrand is equal to

zero outside of Λt+1. Since Tt ⊂ T , we can bound the inff∈Tt by inff∈T from below.

1The Stopping set lemma still holds as expected, the only required modification is to start ‘growing’
with the random set A0 = η ∩ Λc

t ∩ Λt+1. Another way to formalize this is by introducing a virtual
‘ghost-vertex’ with a modified connection function such that it connects to all points in Λc

t .
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We explicitly write out the mark of x = xa. We find that

d

dλ
P[om ↔ Λct ] ≥

1

λ
inf
f∈Tt

λ

∫
X
P[om ↔ x in ξom,xa [f∗η ∪ {om, xa}]](1− f(xa))dxa

×
∫

1{om ̸∈ C}P[Dm ∈ dC]

≥ 1

λ
inf
f∈T

∫
M
φλ(f ;m, a)ρ(da)

∫
1{om ̸∈ C}P[Dm ∈ dC] (4.4)

=
1

λ
inf
f∈T

∫
M
φλ(f ;m, a)ρ(da)P[om ↮ Λct ],

where to get (4.4) from the previous line we apply the definition of φλ (4.1) and

take the inf over the larger set T . This gives us (4.3). For the RCM we could now

continue to solve the differential inequality. However, λ > λ̃c only guarantees that

ess supm∈M inff∈T
∫
M φλ(f ;m, a)ρ(da) ≥ 1 for all f .

We define

Mλ(t) :=

{
m ∈M | inf

f∈T

∫
M
φλ(f ;m, a)ρ(da) ≥ t

}
.

We find that ρ(Mλ(1)) > 0 as follows. First note that by assumption λ/λ̃c > 1. By

definition of φλ (4.1) it holds for all a,m ∈M that φλ(· ;m, a) ≥ λ
λ̃c
φλ̃c(· ;m, a).

Hence,

ess sup
m∈M

inf
f∈T

∫
M
φλ(f ;m, a)ρ(da) ≥

λ

λ̃c
ess sup

m
inf
f

∫
M
φλ̃c(f ;m, a)ρ(da) ≥

λ

λ̃c
> 1.

And so the claim that ρ(Mλ(1)) > 0 holds.

We now derive item (II) from (4.3). Let m ∈ Mλ(1). Thus, for all f ∈ T we have

φλ(f) ≥ 1. Then
d

dλ
θmt (λ) ≥ 1

λ
(1− θmt (λ)).

We divide both sides by 1− θmt and integrate from λ̃c to λ to obtain∫ λ

λ̃c

d
dλθ

m
t (λ′)

1− θmt (λ′)
dλ′ ≥

∫ λ

λ̃c

1

λ′
dλ′.

By u-substitution with u = 1− θmt (λ′) we recover

− log(1− θmt (λ)) + log(1− θmt (λ̃c)) ≥ log(
λ

λ̃c
).
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By rearranging we get λ̃c(1− θmt (λ̃c)) ≥ λ(1− θmt (λ)), and hence

θmt (λ) ≥ λ− λ̃c(1− θmt (λ̃c))

λ
.

Now we can let t→∞ and using the fact that (1− θm(λ̃c)) ≤ 1 we recover

θm(λ) ≥ λ− λ̃c
λ

.

It holds that ess supm∈Mλ(1)
θm(λ) ≤ ess supm∈M θ

m(λ), and so

ess sup
m∈M

θm(λ) ≥ λ− λ̃c
λ

.

Additionally, since ρ(Mλ(1)) > 0 we get θ(λ) > 0. ■

4.5 Proof of Theorem 4.4

We now have the tools to show Theorem 4.4. Remember we are trying to show for

λ ∈ (0, λc) that
|L1(ξλ ∩ Λt)|

log t
−→ d

ζ(λ)
in probability.

We will first use exponential decay of the t-percolation probability to prove exponential

decay of the number of vertices in the component containing the origin. We then use

this fact to show ζ(λ) is well defined, continuous and decreasing.

4.5.1 Exponential decay in volume

To get a hold of the relevant facts about the inverse correlation length, we first need an

exponential bound on the number of vertices in the component containing the origin.

We adapt the following arguments from [Dum18] to the MRCM. We start with a simple

lemma.

Lemma 4.18. Suppose λ < λc. Let b ≥ a ≥ 2. Then

Pλ[Λa ↔ Λcb] ≤ λ(2a)d exp(−c(b− a))

where c = c(λ) is the same constant as in Theorem 4.7.
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Proof. We apply the Markov inequality followed by the Mecke equation. We find that

Pλ[Λa ↔ Λcb] ≤ Eλ

 ∑
x∈Pλ(Λa)

1{x↔ Λcb}


= λ

∫
Λa

P[x↔ Λcb]dx

≤ λLeb(Λa)Pλ[o↔ Λcb−a]

≤ λ(2a)d exp(−c(b− a)),

where the exponential bound comes from Theorem 4.7. ■

Lemma 4.19 (Exponential decay of |Co|). For all λ ∈ (0, λc) there exist constants

C̃, c̃ > 0 such that for all m ∈M and all n sufficiently large we find

P[|Com | ≥ n] ≤ C̃ exp(−c̃n), (4.5)

uniformly over m.

Proof. We follow the proof given in [Dum18, Theorem 3.7]. We need to make some

changes to accommodate the Poisson point process. In particular, we upper bound

the number of Poisson points in a random subset of Rd. Recall the notation Λκ(x) :=

x+ [−κ, κ]d. We will not explicitly write out the mark for the origin om.

Let κ > 4, to be chosen later. We define a new graph which we will call Hκ with vertex

set 2κZd and edges between vertices x, y ∈ Hκ if and only if ∥x− y∥∞ ≤ 2κ; this graph

has degree D = 3d − 1, where in particular D is independent of κ.

We call a finite connected set of vertices of Hκ an animal. We denote by A(k) the set

of animals that contain the origin and are of cardinality k. For each animal A ∈ A(k)
let T (A) be a maximal stable set of sites in A. That is the largest collection of x ∈ A
such that no two x, y ∈ T (A) share an edge. In the case of multiple possible such sets

any tiebreaker will work.

We shall say that a vertex x in Hκ is good if the event {Λκ(x) ↔ Λ3κ/2(x)
c in ξoλ}

occurs. We shall say an animal A is good if every x ∈ A is good.

Let c′ ∈ (0, 1), to be chosen later. We set k := k(n) := ⌊ c′n
λ(2κ)d

⌋. Let Fk be the event
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that there exists some A ∈ A(k) such that A is good. Then

P[|Co| ≥ n] ≤ P[Fk] + P[|Co| ≥ n, F ck ]. (4.6)

First we bound P[|Co| ≥ n, F ck ]. We define C∗o := {x ∈ κZd | Λκ(x) ∩ Co ̸= ∅}, to be

the minimal animal that contains Co.

Then C∗o is connected, o ∈ C∗o and if |C∗o | > D + 1, then all sites in C∗o are good. It

follows that if k ≥ D + 1 and |C∗o | ≥ k then Fk occurs. Also, if |C∗o | < k then there

exists at least one animal A ∈ A(k) with C∗o ⊂ A. Hence, if n is large enough so that

k ≥ D + 1, then

P[|Co| ≥ n, F ck ] ≤ P[|Co| ≥ n, |C∗o | < k]

≤ P

 ⋃
A∈A(k)

{
η
(
∪x∈A Λκ(x)

)
≥ n

}
≤

∑
A∈A(k)

P[Pois(λκd|A|) ≥ n].

By [Pen03, Lemma 9.3] we know that |A(k)| ≤ 2kD.

Hence,

P[|Co| ≥ n, F ck(n)] ≤ 2kDP[Pois(λkκd) ≥ n] ≤ 2kDP[Pois(c′n) ≥ n].

Assume c′ ≤ e−4. Then by [Pen03, Lemma 1.2, eq. (1.12)] (see also Section 4.6) we

have that P[Pois(c′n) ≥ n] ≤ e−2n.

Assume also that c′ ≤ λκd/(D log 2), then

2kD ≤ exp((D log 2)c′n/(λκd)) ≤ en.

Combining these estimates yields

P[|Co| ≥ n, F ck ] ≤ exp(−n). (4.7)

Next we bound P[Fk]. It is always possible to find a set T (A) of cardinality at least

(k − 1)/D. Such a set can be constructed iteratively by using a ‘greedy’ approach;

subsequently adding vertices adjacent to neighbors of already added vertices in such a
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way there they are not a direct neighbor of any already chosen vertex.

Then by the union bound,

P[Fk] ≤
∑

A∈A(k)

P[A is good]

≤
∑

A∈A(k)

P[∀x ∈ T (A) : x is good]

We use the fact that the goodness of sites in T (A) are independent, since the boxes

that define them do not intersect.

P[Fk] ≤
∑

A∈A(k)

P[Λκ ↔ Λc3κ/2]
|T (A)|

≤ |A(k)|P[Λκ ↔ Λc3κ/2]
k/D.

We can now apply Lemma 4.18 and pick κ > 2 sufficiently large such that

P[Λκ ↔ Λc3κ/2] ≤ λκ
d exp(−cκ/2) ≤ 1

e
· 2−D2

.

Using |A(k)| ≤ 2Dk again, we thus find that

P[Fk] ≤ 2Dk(e−k/D2−kD) ≤ exp(−c′n/(2λκdD)). (4.8)

Putting (4.6), (4.7) and (4.8) together gives us (4.5). ■

4.5.2 Properties of the inverse correlation length

To prove Theorem 4.4, the only missing ingredient is a more detailed understanding of

the inverse correlation length ζ. We recall the Definition 4.2.

ζm(λ) := lim
n→∞

− 1

n
logP[|Com | = n in ξomλ ] (C1)

= lim
n→∞

− 1

n
logP[n ≤ |Com | <∞ in ξomλ ]. (C2)

We start with showing that the limit exists using the following lemma, a proof of which

can be found in [Fek23].

Lemma 4.20 (Fekete’s Subadditivity Lemma). Let (un)n ⊂ R be a sequence of num-
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bers. If for all n and m we have un+m ≤ un + um, then

lim
n→∞

un
n

= inf
n

un
n
∈ [−∞,∞).

The following proof is based on [Pen03], where the same fact is shown for the case

where ψ(x) = 1{∥x∥ ≤ 1}.

Proof of Lemma 4.3. First we show convergence of (C1). We then show equality of

(C1) and (C2). Then we show continuity and the limiting behavior as λ goes to zero.

We show each of these properties point-wise in m.

Convergence To prove convergence we use Fekete’s Subadditivity Lemma. Showing

subadditivity for − log pmn is equivalent to showing supermultiplicativity for pn. It is

easier to show supermultiplicativity for the following modified quantity

p̃mn+1 = λn
∫
Xn

1{om < x1 < · · · < xn}g(om, x1, . . . , xn) exp
(
−λ
∫
X
ψom,x⃗(z)dz

)
dx⃗,

where the difference to pn+1 is that the indicator includes the origin2. Note that g is

defined as in Proposition 4.11. It can be interpreted as the probability that |Com | = n+1

and that the origin is the left-most point. It holds that p̃n+1 = pn+1/(n + 1). This is

true since we have a uniform (i.e. 1
n+1) chance that the origin is the left-most vertex.

Notice that by symmetry we also have:

p̃mn+1 = λn
∫
Xn

1{x1 < · · · < xi < om < xi+1 < · · · < xn}

× g(om, x1, . . . , xn) exp
(
−λ
∫
X
ψom,x⃗(z)dz

)
dx⃗,

for every i ∈ [[1, n]]. Combining we find

p̃mn+1p̃
m
k+1

= λn+k
∫
Xn

∫
Xk

g(om, x1, . . . , xn)g(om, y1, . . . , ym)1{om < x1 < · · · < xn}

× 1{y1 < · · · < yk < om} exp
(
−λ
∫
X
ψom,x⃗(z)dz +

∫
X
ψom,y⃗(z)dz

)
dy⃗dx⃗

2When written as in Remark 4.12
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It is immediately clear that

1{y1 < · · · < yk < om}1{om < x1 < · · · < xn} = 1{y1 < · · · < yk < om < x1 < · · · < xn}.

We rename y1, . . . , ym to xn+1, . . . , xn+m. We now reduced the problem to showing

g(om, x1, . . . , xn)g(om, xn+1, . . . , xn+m) ≤ g(om, x1, . . . , xn+m)

and

ψom,x1,...,xn(z) + ψom,xn+1,...,xn+m(z) ≥ ψo,x⃗(z).

The first equation follows, since the union of two connected graphs with a vertex in

common is again a connected graph. The second equation holds by the union bound.

Hence, we get

p̃mn+1p̃
m
k+1 ≤ p̃mn+k+1.

By choosing ũmn := − log p̃n+1 and applying Fekete’s Subadditivity Lemma we know

that limn→∞
umn
n exists. By rearranging and using the fact that p̃mn = pmn

n we find that

lim
n→∞

− log p̃mn
n

= lim
n→∞

− log pmn − log n

n
= lim

n→∞
− log pmn

n
.

Furthermore, since the umn ’s are lower bounded by 0 we get the stronger bound that

ζm(λ) ∈ [0,∞). We also find immediately by Lemma 4.19 that if λ < λc we have

ζm(λ) > 0:

− 1

n
log(C̃ exp(−c̃n)) ≥ c̃− log C̃

n

n→∞−−−→ c̃ > 0.

Importantly, the above bound holds uniformly for every m, so we find that

ζ(λ) ≥ ζmin(λ) > 0. (4.9)

Equivalence of definitions (C1) and (C2) We show the two definitions of the

m-inverse correlation length are indeed equivalent. It suffices to show that

qmn := qmn (λ) :=

(
P[|Com | = n]

P[n ≤ |Com | <∞]

) 1
n n→∞−−−→ 1

We immediately know that qmn ≤ 1, so we only need to bound it from below. Let

0 < ζ− < ζm(λ) < ζ+, to be chosen later (which we can do by (4.9)). For now ζm(λ)

will refer to (C1), i.e. the definition using P[|Com | = n]. Then, by existence of the
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limit, we know that for n sufficiently large it holds that

e−nζ
+
< P[|Com | = n] < e−nζ

−
. (4.10)

This gives us the following bounds on P[n ≤ |Com | <∞] =
∑

k≥n P[|Com | = n],

e−ζ
+n

1− e−ζ+
< P[n ≤ |Com | <∞] <

e−ζ
−n

1− e−ζ−
. (4.11)

Now let ε > 0. We want to show the existence of an n0 such that for all n ≥ n0 we

have qmn ∈ (1− ε, 1]. We now choose ζ± = ζ(λ)± ε/4. Let n be sufficiently large, such

that (4.10) holds and

e−ε/2(1− e−ζ−)
1
n > (1− ε). (4.12)

Now we bound qmn using (4.10) and (4.11):

qmn >
e−ζ

+
(1− e−ζ−)

1
n

e−ζ−
.

Substituting for the defintion of ζ± together with (4.12) we find that

qmn > 1− ε.

Thus, the two definitions of ζm are equivalent.

Continuity and monotonicity For continuity and monotonicity of ζm we follow

[Pen03, Theorem 10.1]. First we show that ζm is non-increasing and continuous. Con-

sider the quantities qn(λ) = P[|Com | = n] and q+n := P[n ≤ |Com | <∞]. It is easy to see

that q+n is increasing in λ for every n in the subcritical regime. We now define

um(λ) := lim
n→∞

q+n (λ)
1/n = e−ζ

m(λ).

We see that um is non-decreasing, which in turn shows that ζm is non-increasing in λ.

We move on to continuity in λ. We couple the MRCM at different intensities λ.

Consider 0 < λ < µ < λc. We mark every point Xi with an additional mark λi ∼
Unif([0, µ]). For a given intensity λ we may retain all points where λi ≤ λ to recover

ξλ from ξµ.

Now, one way for the event {|Com | = n in ξomλ } to hold is to require {|Com | = n in ξomµ }
and all (Xi, λi) ∈ Com have the property that λi < λ, which has probability λ/µ, per
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vertex. This gives

P[|Com | = n in ξomλ ] ≥
(
λ

µ

)n−1
P[|Com | = n in ξomµ ].

Then

um(λ) = lim
n→∞

qn(λ)
1/n ≥ lim

n→∞

((
λ

µ

)n−1
qmn (µ)

)1/n

=
λ

µ
um(µ).

This together with the fact that um is non-decreasing gives the continuity for um as

follows. Fix some λ ∈ (0, λc). Let ε > 0, δ = λε/um(λ) and λ′ ∈ (λ− δ, λ+ δ). Assume

λ′ > λ. Then

um(λ′)− um(λ) ≤ λ′

λ
um(λ)− um(λ) ≤ um(λ) δ

λ
≤ ε.

The case where λ′ < λ is analogous.

Continuity of um implies that ζm is also continuous in λ in the range (0, λc). Notice

further that our choice of ε and δ did not depend on m. Thus, the family (ζm)m∈M is

equicontinuous implying that ζ is also continuous.

Near zero behavior We show as λ → 0 that ζm(λ, ψ) → ∞. We show this by

bounding the size of the component of the origin by the total progeny (total number of

vertices) of a Galton-Watson tree. For more details see [Pen93] where a similar strategy

was used. We use the following theorem by [Dwa69].

Lemma 4.21 (Dwass’ formula). Let τ be a Galton-Watson tree with offspring distri-

bution ν. Let |τ | be its total progeny. We let Nk := X1 + · · · +Xk where Xj ∼ ν iid.

Then

P[|τ | = k] =
1

k
P[Nk = k − 1].

Now we can dominate |Com | by a Galton-Watson tree τ with offspring distribution

Pois(λZ∞ψ ), where Z∞ψ = ess supa∈M
∫
Rd

∫
M ψ(x; a, b)ρ(db). It dominates |Com | for all m

in the sense that

P[|τ | ≥ k] ≥ P[|Com | ≥ k].

The use of the essential supremum will help us avoid having to track the marks of all

vertices in Com . For simplicity, we write α = λZ∞ψ .

A proof of this for the RCM was given in [Pen93]. We know that for α < 1 the Galton-

Watson tree is subcritical and so the total progeny |τ | of the tree is almost-surely finite.
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By using Dwass’ formula we find that

P[|τ | ≥ k] =
∞∑
j=k

1

j
P[Pois(jα) = j − 1]

=
∞∑
j=k

e−jα(jα)j−1

j!
.

By the fact that for all j ∈ N we have jj

j! ≤ e
j we find that

P[|τ | ≥ k] ≤ 1

α

∞∑
j=k

(e(1−α)α)j

=
(e1−αα)k

α(1− e1−αα)
.

By substituting λZ∞ψ back in for α we find that

lim sup
n→∞

1

n
logP[|Co| ≥ n] ≤ lim sup

n→∞

1

n
logP[|τ | ≥ n]

≤ lim sup
n→∞

(
(1− α) + logα− 1

n
logα− 1

n
log(1− e1−αα)

)
≤ 1− λZ∞ψ + log

(
λZ∞ψ

)
.

And so the upper bound tends to −∞ as λ (or Z∞ψ ) goes to zero. Hence, by applying

Definition 4.2, we have that ζm(λ, ψ)→∞.

Equivalence of definitions (C3) and (C4) Let ζmin(λ) := ess infm∈M ζ
m. We know

that ζmin(λ) > 0. Let ε > 0 be small. Define Mε := {m ∈ M | ζm(λ) < ζmin(λ) + ε}.
We know that ρ(Mε) > 0 by the definition of ess inf.

For m ∈M, by the definition of ζm, and for n sufficiently large it holds that:

e−(ζ
m+ε)n ≤ P[|Com | = n] ≤ e−(ζm−ε)n. (4.13)

And so we can upper bound∫
M
P[|Com | = n]ρ(dm) ≤

∫
M
e−(ζ

m−ε)nρ(dm) ≤ e−(ζmin−ε)n.
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For the lower bound we know by definition of Mε and (4.13):∫
M
P[|Com | = n]ρ(dm) ≥

∫
Mε

P[|Com | = n]ρ(dm) ≥ e−(ζmin+2ε)nρ(Mε).

Now, taking the − log of these expressions and dividing by n we find that:

− 1

n
log

∫
M
P[|Com | = n]ρ(dm) ≤ ζmin + 2ε− 1

n
log(ρ(Mε))

n→∞−−−→ ζmin + 2ε.

Thus, it follows that ζ(λ) = ζmin(λ).

All marks are equal Now assume that A,B ⊂ M measurable with ρ(A) > 0 and

ρ(B) > 0. Assume by contradiction that ζA > ζB. We write ζA − ζB = δ > 0. Then,

by definition of ζ there must exist some n0 ∈ N such that for all n ≥ n0 we have that

− 1

n
logP[|CoA | = n] ≥ − 1

n
logP[|CoB | = n] +

δ

2
.

By rewriting it follows that

P[|CoA | = n] ≤ e−
δ
2
nP[|CoB | = n]. (4.14)

It holds that P[|CoA | = n] ≥ P[|CoA | = n,CoA ∩ XB ̸= ∅]. By Corollary 4.15 we find

that

P[|CoA | = n,CoA∩XB ̸= ∅] =
ρ(B)

ρ(A)

E[|CoB ∩ XA| | |CoB | = n]

E[|CoA ∩ XB| | |CoA | = n, CoA ∩ XB ̸= ∅]
P[|CoB | = n].

We can now upper bound the denominator by

E[|CoA ∩ XB| | |CoA | = n, CoA ∩ XB ̸= ∅] ≤ n.

By (A1) we know that for sufficiently large n it must holds that

E[|CoB ∩ XA| | |CoB | = n] ≥ c,

for some c > 0.
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Combining we find that

P[|CoA | = n,CoA ∩ XB ̸= ∅] ≥ ρ(B)

ρ(A)

c

n
P[|CoB | = n].

This is a contradiction to (4.14), for sufficiently large n. Note that we require assump-

tion (A1) for this to hold true, as it guarantees that P[CoB ∩ XA ̸= ∅] ̸= 0. And thus

ζA = ζB. ■

4.5.3 Proof of Theorem 4.4

The following proof closely follows the proof on the log bound of the Poisson Boolean

model by Penrose in [Pen03, Theorem 10.3].

Proof of 4.4. We start by showing that the largest component in a box with side lengths

2s is no larger than d
ζ(λ) log 2s. Let α >

d
ζ(λ) . By applying the Markov bound and then

the Mecke formula we find

P[|L1(ξλ ∩ Λs)| ≥ α log 2s] ≤ E

[∑
x∈η

1{|C(x, ξx ∩ Λs)| ≥ α log 2s}

]

= λ

∫
Λs

∫
M
P[|C(xm, ξxm ∩ Λs)| ≥ α log 2s]ρ(dm)dx

Now consider some ζ ′ ∈ ( dα , ζ(λ)). By definition (C3) of ζ(λ) as a limit, we know that

for s large enough∫
M
P[|C(xm, ξxm ∩ Λs)| ≥ α log 2s in ξxmλ ]ρ(dm) ≤

∫
M
P[|Com | ≥ α log 2s in ξomλ ]ρ(dm)

≤ exp(−ζ ′α log 2s) = (2s)−ζ
′α.

Hence, by our choices of α and ζ ′, we find

P[|L1(ξλ ∩ Λs)| ≥ α log 2s] ≤ λ(2s)d−ζ′α s→∞−−−→ 0.

For the other direction we choose β < d/ζ(λ) and ζ ′′ ∈ (ζ(λ), d/β). We will tile

the box Λs with smaller boxes. Let m(s) = ⌊ s
β log 2s⌋

d denote the number of boxes.

Let {A1,s, . . . , Am(s),s} be the maximal collection of disjoint boxes with side-length

2s/ d
√
m(s) ≥ 2β log 2s, where, by our choice of side-length, the Ai,s fill Λs exactly. Let

xi,s denote the center of the box Ai,s. Now consider λ′ ∈ (0, λ) such that ζ(λ′) < d/β.
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This is possible by the continuity of ζ. We can separate ηλ into a union of ηλ′ and

ηλ′,λ =
{
(Xi, λi)

∣∣ λ′ ≤ λi < λ
}
.

Now take ζ(λ′) < ζ ′′ < d/β.

Let x ∈ Rd and r > 0. Denote by Br(x) the closed ball with radius r centered at x. If

ηλ′,λ ∩B1(xi,s) consists of a single point we denote that point by Xi,s and let

Vi,s := |C(Xi,s, ξ
Xi,s

λ′ ∩Bi,s)|,

where Xi,s inherits the connections from the original sampling of ξλ. If |ηλ′,λ∩Bi,s| ̸= 1

then let Vi,s = 0. Let µ be the volume of a d-dimensional unit ball. By our choice of

box size we know that {0 < Vi,s < β log 2s} ⊂ {CXi,s(ξλ′) ⊂ Bi,s} and so Vi,s has the

distribution of the size of the component of the origin. Then, by independence of ηλ′

and ηλ′,λ, we find for large s that

P[Vi,s ≥ β log s] ≥ µ(λ− λ′)e−µ(λ−λ
′)

∫
M
P[|Com | ≥ β log 2s in ξomλ′ ]ρ(dm)

≥ c′ exp(−ζ ′′β log 2s) = c′s−ζ
′′β,

where the inequality follows from the definition of ζ and c′ = µ(λ− λ′)e−µ(λ−λ′). The

random variables Vi,s are independent, since they are dependent on configurations in

disjoint boxes. It follows that

P
[m(s)⋂
i=1

{Vi,s < β log 2s}
]
≤
(
1− c′s−ζ′′β

)m(s)

≤ exp(−c′s−ζ′′βm(s))

which tends to zero by the definition of m(s) and the fact that ζ ′′β < d. On the other

hand, if for some i we have Vi,s ≥ β log 2s, then L1(ξλ ∩ Λs) ≥ β log 2s. This gives us

the desired result. ■

4.6 Large Poisson Deviations

Theorem 4.22. Let c > 0 and a > λ > 0. Then for any c′ ∈ (0, a log( aλ) + λ− a) and
all sufficiently large k > 0 we find that

P[Pois(λk + c) ≥ ak] ≤ exp(−c′k).
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See also [Pen03].

Proof. We use the Chernoff bound, which is a direct consequence of the Markov in-

equality. Let X be a random variable with a well defined moment generating function

and a ∈ R. Then
P[X ≥ a] = P[etX ≥ eta] ≤ e−taE[etX ].

This bound only holds if t > 0, since x 7→ etx is only increasing for such t. We can take

the infimum with respect to all such t. This gives us

P[X ≥ a] ≤ inf
t>0

e−taE[etX ].

We can now apply this to a Poisson random variable. Let X ∼ Pois(λ) and a ≥ 0.

Using the fact that E[etX ] = eλ(e
t−1) we obtain

P[X ≥ a] ≤ inf
t∈R

e−ta+λe
t−λ.

To find the infimum we take the derivative:

d

dt
e−ta+λe

t−λ = (−a+ λet) e−ta+λe
t−λ︸ ︷︷ ︸

>0

!
= 0.

By solving for 0 we obtain the following:

t∗ = log(
a

λ
).

Note that by our choice of t that this bound only holds when a > λ. Plugging back

into our original bound we finally find

P[X ≥ a] ≤ e− log(a/λ)a+a−λ.

Now we can use the values λk + c and ak where a > λ > 0 and c ∈ R. Then if

k > c/(a− λ) we find that

P[Pois(λk + c) ≥ ak] ≤ exp
(
− k (a log( ak

λk + c
) + λ− a+ c

k
)︸ ︷︷ ︸

>0

)
≤ e−c′k.

■
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Chapter 5

The Supercritical Regime

Percolation models behave in significantly different ways when they are supercritical,

which in our case means λ > λc. The key difference is that the model now contains

an infinite component. In essence, the study of the supercritical regime reduces to

understanding the behavior of the infinite component. For us the local connectivity of

the infinite component will be most important.

Large parts of this chapter concern themselves with adopting ideas from [CMT24] to the

MRCM. The results are needed to ensure that long paths connect with high probability

within a bounded region. The challenges of translating the methods are more apparent

in this chapter than the previous, and in particular some statements are outright false

in this setting.

As in the previous chapter, the Stopping Set lemma will be a key tool.

5.1 Statement

The key statement we want to prove is that in the super-critical regime the largest

component takes up a θ(λ) proportion of all points in a box. This is a natural conjecture

as we might expect the largest component in Λs to approximately be the intersection

of the infinite component with Λs. Note that by Mecke

E[|C∞ ∩ Λs|] = E

 ∑
x∈η∩Λs

1{x↔∞}

 = λ(2s)dθ(λ).
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Figure 5-1: An instance of the MRCM at a supercritical intensity. The largest compo-
nent is highlighted.

The key difficulty lies in proving that the infinite component doesn’t get cut in unlikely

ways by the box, thereby dividing C∞ into smaller components inside the box. The

following theorem essentially states that this does not happen.

Theorem 5.1. Assuming (A2) (defined below), d ≥ 2 and λ > λc(ψ) we have that

lim
s→∞

E[|L1(Λs)|]
λ(2s)d

= θ(λ, ψ).

For intuition, notice in Figure 5-1 that the fraction of points that are occupied by

the largest component are not evenly spread out, but rather clump together and leave

holes. To deal with this difficulty we will employ a coarse-graining argument that will

allow us to work at a scale where we may essentially ignore such defects.
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5.1.1 Outline

In Section 5.2 we prove an upper bound on the ‘two-arm event’, the event where an

inserted point connects to the complement of a ball with two disjoint paths, following

ideas from [CMT23]. In Section 5.3 we expand the previous bound to get a lower bound

on the probability on the event that two disjoint components leave an annulus.

We use this bound to prove a classic result by Grimmett and Marstrand in Chapter

6, following ideas from [DKT21]. It states that in the supercritical regime we can find

a sufficiently thick two-dimensional slab such that the process also percolates in this

slab. We then use the Grimmett-Marstrand result to improve our uniqueness bounds

in Section 6.2.

Finally, in Section 6.3, we use the previous bounds to ‘glue’ paths together and prove

Theorem 5.1 following ideas from [Pen22].

5.1.2 Assumptions

We will need to assume the following lemma as it will be out of the scope of this thesis

to prove.

Lemma 5.2. Let λ > λc. There exists some c, δ > 0 such that for all s ≥ 1 we have:

P[Bs ↔∞] ≥ 1− cs−δ. (A2)

Note that once we have proven Theorem 5.1 (using (A2)) the above assumption holds

with δ = d. Moreover, we will prove a result in Chapter 6 which will allow us to show

that the decay must be exponential (assuming (A2)). Hence, this is a fairly modest

assumption. The difficulty lies in proving this statement ad hoc. We will require (A2)

to ensure the existence of certain long paths. Together with ‘uniqueness’ statements

which we will prove in the following two sections this will be the key tool to construct

large connected components.

In lattice percolation (A2) has been shown without further assumptions, see e.g.

[CMT23]. They rely on a bound by Talagrand [Tal94] that does not, in our case, hold

for the Poisson point processes. A version of this bound has been proven in [NPY19],

but requires additional assumptions that do not hold in our case. In particular, they

provide a counterexample to the general statement. In essence the issue with Poisson

point processes is that an arbitrarily large number of points may clump together.
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5.1.3 Preliminary Results

We will require the following two facts about the Poisson distribution before we can

continue. The first lemma states that Poissonian ‘overshoots’ are in expectation not

more than their expected value.

Lemma 5.3. Let X ∼ Pois(λ) where λ ∈ R>, and let a ∈ N. Then

E[X − a | X ≥ a] ≤ λ.

Proof.

E[X1{X ≥ a}] =
∑
k≥a

ke−λ
λk

k!
= λP[X ≥ a− 1].

By the definition of conditional expectation we have

E[X | X ≥ a] = λ
P[X ≥ a− 1]

P[X ≥ a]
= λ

(
1 +

P[X = a− 1]

P[X ≥ a]

)
. (5.1)

Then we bound

λ
P[X = a− 1]

P[X ≥ a]
= λ

λa−1/(a− 1)!∑
k≥a

λk

k!

= a
λa/a!∑
k≥a

λk

k!

≤ a. (5.2)

Combining (5.1) and (5.2) yields: E[X | X ≥ a] ≤ λ+ a. ■

The following bound on the moments of Poisson random variables is from [Ahl22]

(where the author proves a sharper and more general bound).

Lemma 5.4. Let X ∼ Pois(λ) and k ≥ 0, then

E[Xk] ≤ λk exp
(
k2

2λ

)
.

5.2 Two-arm Bound

The goal of this Section is to prove an upper bound on the ‘two-arm’ event. In words

the two-arm event determines if two disjoint clusters are close enough to each other

that a single added point can connect them.

Let K be a compact subset of Rd and x ∈ K × M. Denote by CK := CK(ξλ) the

collection of connected components in ξλ ∩ K that are connected to Kc in ξλ. For

each component we only consider the points that are in K. Furthermore, we consider
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two such components separate even if they connect outside K. We denote by CxK the

collection of such components in the graph ξxλ. Consider the following event

Armx(K) := {|CxK | < |CK |}.

In words, the arm event happens when x connects to Kc through two (or more) com-

ponents that are only connected through x. We will write Armx(t) := Armx(Bt) and

Arm(t) := Armo(t).

For subsets K ⊆ Rd we introduce the following notation. First, we write |K| to denote

the Lebesgue measure of K. We also define the set ∂inK := {x ∈ K | d(x,Kc) ≤ 1}.

The goal of this section is bound the probability of the two-arm event as a function of t.

We will require the following technical lemma adapted from [CMT23] to the continuum.

Lemma 5.5. Let K ⊂ Rd be a measurable compact set. Let ε ∈ (0, 12). Let h be a

function from connected components to the real numbers. Then

E

 ∑
C∈CK

h(C)

 ≤ λ(∫
K

∫
M
E
[
h(Cxm)2

|Cxm |1+ε

]
ρ(dm)dx

) 1
2
(
|K|ε|∂inK|1−ε

) 1
2

.

Lemma 5.5 might seem unnatural at first, but it will help us reduce the proof of

Proposition 5.6 to finding a suitable function h.

Proof. For this proof we will write C = CK and drop explicit mentions of marks. First,

we notice that we can replace the sum over components by a sum over points in those

components as long as we divide by the number of points in that given component. By

the Mecke formula

E

[∑
C∈C

h(C)

]
= E

 ∑
x∈η∩K

h(Cx)
|Cx|

1{x↔ Kc}


= λ

∫
K
E
[
h(Cx)
|Cx|

1{x↔ Kc}
]
dx

We require the indicator 1{x ↔ Kc} to ensure that Cx ∈ C. Next we apply the

Cauchy-Schwarz inequality. We use the fact that
∫
E[f(x)g(x)]dx is an inner product.
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We choose f(x) = h(Cx)
|Cx|(1+ε)/2 and g(x) = 1{x↔Kc}

|Cx|(1−ε)/2 . We find that

E

[∑
C∈C

h(C)

]
≤ λ

(∫
K
E
[
h(Cx)2

|Cx|1+ε

]
dx

) 1
2 (∫

B
E
[
1{x↔ Kc}
|Cx|1−ε

]
dx
) 1

2
.

The contents of the left parentheses are already as desired. Now we have to simplify

the contents of the right parentheses. We use the Mecke equation again (in the other

direction) together with the fact that the sum over all points reaching Kc is equal to

the sum over all components reaching Kc multiplied by their number of vertices. This

gives

∫
K
E
[
1{x↔ Kc}
|Cx|1−ε

]
dx =

1

λ
E

 ∑
x∈η∩K

1{x↔ Kc}
|Cx|1−ε


=

1

λ
E

[∑
C∈C
|C|ε · 1

]
.

Next, we apply Hölder’s inequality to the sum inside the expected value with parameters
1
ε and 1

1−ε , and again with the same parameters in the third inequality. Then,

1

λ
E

[∑
C∈C
|C|ε · 1

]
≤ 1

λ
E

[
(
∑
C∈C
|C|)ε · |C|1−ε

]

≤ 1

λ
E

( ∑
x∈η∩K

1)ε(
∑

x∈η∩∂inK

1)1−ε


≤ 1

λ
E [η(K ×M)]ε E

[
η(∂inK ×M)

]1−ε
= |K|ε|∂inK|1−ε.

To get to the second line from the first line note that the total number of points in the

components of C is naturally upper bounded by the number of vertices in K. Similarly,

the number of components |C| is bounded by the number of vertices in the boundary

∂inK, since each component has to reach Kc by definition. ■

We will use Lemma 5.5 to show the following key result.

Proposition 5.6. Let λ > 0. There exists some ε0 > 0, t0 > 0 and c0 > 0 such that

for all ε ∈ (0, ε0) and all t > t0 we have

Pλ[Arm(t)] ≤ c0√
ε
t−

1
2
+ε.
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Note that the mark of the origin is sampled randomly by P.

By setting ε = 1
log t and noting that t1/ log t = e we get the following corollary.

Corollary 5.7. Let λ > 0 and t > e we have

Pλ[Arm(t)] ≤ c
(
log(t)

t

) 1
2

,

where c = ec0, c0 is as in Proposition 5.6 and e is Euler’s number.

We remind the reader of the following notation. If A ⊂ X is a locally finite set, we

define

ψA(x) := 1−
∏
y∈A

(1− ψ(x, y)), (2.2)

to be the probability of x connecting to at least one vertex in A. The following proof

adapts an argument in [CMT23] to the MRCM.

Proof of Proposition 5.6. We fix t > 2 and s = (t + 1)/2. We notice that for all

x ∈ Bs−1
P[Armo(t)] ≤ P[Armo(Bs(x))] = P[Arm−x(Bs)],

since Armo(t) implies Armo(Bs(x)). Note that there is a ‘buffer’ of distance 1 between

x ∈ Bs−1 and Bs to guarantee that x can not share an edge with a point outside Bs,

otherwise the above implication could break. Integrating x over Bs−1 we find

P[Arm(t)] ≤ 1

|Bs−1|

∫
Bs−1

P[Armx(s)]dx

≤ 1

|Bs−1|

∫
Bs

P[Armx(s)]dx.

(5.3)

We want to apply Lemma 5.5, which means we have to find the right h to upper-

bound E
[∑

x∈η∩Bs
1{Armx(s)}

]
. We write C := CBs and Cx := CxBs

. We define

C :=
⋃
C∈CC to be the collection of all points that are connected to Bc

s. Similarly, we
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Figure 5-2: On the left hand side we sketch out Armo(t), with a point x and Bs(x)
overlaid in blue. On the right hand side we sketch Armo(Bs(x)), re-centered on x.
Notice that Armo(t) necessarily implies Armo(Bs(x)).

define C
x
:=
⋃
C∈Cx C. We observe that∫

Bs

P[x ∼ C]dx =

∫
Bs

P [x↔ Bc
s] dx−

∫
∂inBs

P
[
x↔ Bc

s, x ̸∼ C
]
dx

≥ 1

λ
E

 ∑
x∈η∩Bs

1{x↔ Bc
s}

− λc′sd−1
=

1

λ
E

[∑
C∈C
|C|

]
− λc′sd−1,

(5.4)

for some constant c′ > 0.

For a given point x, we have that the event Armx(s) occurs if x connects to two (or

more) C ∈ C. Explicitly Armx(s) = {
∑

C∈C 1{x ∼ C} ≥ 2}. We also know that for

any random variable X taking values in N it holds that P[X ≥ 2] ≤ E[X]−P[X ≥ 1]1.

Using (5.4) in line 2 we find that

∫
Bs−1

P[Armx(s)]dx ≤
∫
Bs−1

E
[(∑

C∈C
1{x ∼ C}

)
− 1{x ∼ C}

]
dx

≤ E

[∑
C∈C

(∫
Bs×M

ψC(x)dx− 1

λ
|C|
)]

.

(5.5)

1Using the fact that E[X] =
∑

n∈N P[X ≥ n].
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We now want to use Lemma 5.5 with

h(C) = λ

∫
Bs×M

ψC(x)dx− |C|. (5.6)

To prepare for the final step we first show

E
[
h(Cx)2

|Cx|1+ε

]
≤ cε <∞, (5.7)

where cε is independent of s and x. The strategy will be to construct Cx iteratively

in the same manner as in the proof of the Stopping Set lemma, except we stop the

exploration outside of Bs. We start with A−1 = ∅ and A0 = {x}. We construct Ai by

adding all neighbors of Ai−1 in Bs. For simplicity of notation we define the increment

Nt+1 := At+1 \At. We also define the following integrals

αt := λ

∫
Bs×M

ψAt−1(x)dx and βt := λ

∫
Bs×M

ψNt−1(x)(1− ψAt−2(x))dx.

Note that α0 = 0

To bound h(Cx) we will construct a martingale Xt whose terminal value is h(Cx).
Consider the filtration Ft := σ(A0, . . . , At). We will use the following three facts that

arise in the proof of the Stopping Set lemma.

1. The sets η \At+1 and At+1 \At are independent given Ft.

2. The set η\At+1 is distributed like a Poisson point process with intensity λ(1−ψAt)

given Ft.

3. Given Ft the set Nt+1 is distributed like a Poisson point process with intensity

λψNt(1− ψAt−1).

We define Xt := |At| − αt. We will show that this is a martingale with the needed

properties.2 The identity

ψAt − ψAt−1 = 1− (1− ψNt)(1− ψAt−1)− ψAt−1

= ψNt(1− ψAt−1)
∀t ≥ 0,

shows that αt − αt−1 = βt and so αt =
∑

s≤t βs. We verify that (Xt)t≥0 is indeed a

2Xt is defined as the negation of h, as this is the more natural choice from a martingale perspective.
This will not matter as we will square h later.
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martingale using fact 3. from above:

E[Xt+1 −Xt | Ft] = E[|Nt+1| − λ
∫
Bs×M

ψNt(1− ψAt−1)dy | Ft]

= E
[
|Nt+1| − E[|Nt+1| | Ft] | Ft

]
= 0.

Note that X0 = 1. Let T := inf{t ∈ N | Nt = ∅} be the almost surely finite random

time when no new points in Bs are path-connected to x. Notice that by definition of

T and the exploration process we have AT = AT−1 = Cx. Similarly, we also find that

XT = XT−1. Thus,

XT = |AT | − λ
∫
Bs×M

ψAT dx = −h(Cx).

Note that (αt)t and (βt)t are predictable sequences: they are measurable with respect

to Ft−1. Then, using the fact that |At \At−1| ∼ Pois(βt) conditional on Ft−1 we find

E[(Xt −Xt−1)
2] = E[(|Nt| − βt)2]

= E
[
E[β2t − 2βt|Nt|+ |Nt|2 | Ft−1]

]
= E

[
E[β2t − 2β2t + β2t + βt | Ft−1]

]
= E[|At \At−1|].

We know by orthogonality of martingale increments that

E[X2
t ]− E[X2

0 ] =
t∑
i=1

E[(Xi −Xi−1)
2] =

t∑
i=1

E[|Ai \Ai−1|] = E[|At|]− 1. (5.8)

This can be interpreted as saying that the variance of the exploration process is exactly

the size of the component at that point in the process, as might be expected from a

Poisson point process.

Next we will require a bound on E[X2
T1{|AT |∈[a,b]}] for any a, b ∈ R≥0 with a < b. We

introduce Sb := min{t ≥ 0 : |At| > b} to be the stopping time where |At| first exceeds
b. It is possible for the event {Sb = ∞} to have positive probability, i.e. if |AT | ≤ b.

On the other hand, if Sb < ∞ it immediately follows that Sb < T , since T is the last

time At can increase. We now drop the subscript S = Sb for notational convenience.

Notice that:

E
[
X2
T1{|AT |∈[a,b]}

]
≤ E

[
X2
T1{|AT |≤b}

]
= E

[
X2
T∧S1{S=∞}

]
. (5.9)
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The stopping time T ∧ S is almost surely at most b, since the slowest |At| can increase

without stopping is 1 every time step. If |At| stops increasing any time before reaching

b then T ≤ b. By the Optional Stopping theorem (applied to the martingale X2
t −|At|)

and (5.8) we can write 0 = E[X2
T∧S − |AT∧S |]. We multiply by 1 = 1{S=∞} + 1{S<∞}

and rewrite as

E
[
X2
T∧S1{S=∞}

]
= E

[
|AT∧S |1{S=∞} + |AT∧S |1{S<∞} −X2

S1{S<∞}
]
. (5.10)

We can bound |AT∧S |1{S=∞} ≤ b and −X2
S1{S<∞} ≤ 0. Next we bound |AT∧S |1{S<∞}.

Since the increment |NS | has to be strictly larger than b− |AS−1|, and by definition of

S we get

|NS | > b− |AS−1| ≥ 0.

Next we wish to apply Lemma 5.3 to |NS |. But since S is a stopping time |NS | need
not be Poisson distributed. We want to say that “|NS | ∼ Pois(βS)”. To make this

rigorous we condition on {S = k} = {|Nk| > b− |Ak−1|} ∩ {|Ak−1| ≤ b}.

E[|AT∧S |1S<∞] =
∑
k≥1

E[|Ak|1{S = k}]

=
∑
k≥1

E [E [(|Nk|+ |Ak−1|)1{|Nk| > b− |Ak−1|} | Fk−1]1{|Ak−1| ≤ b}]

Now using Lemma 5.3 (rewritten as E[X1{X ≥ a}] ≤ (λ+ a)P[X ≥ a]) we find

E[|AT∧S |1S<∞] ≤
∑
k≥1

E [(βk + b+ 1)P[S = k | Fk−1]1{|Ak−1| ≤ b}] .

By the union bound, conditionally on |Ak−1| ≤ b, we have that βk ≤ λZ∞ψ Nk−1 ≤
λZ∞ψ b. Inserting this bound above we find:

E[|AT∧S |1S<∞] ≤
∑
k≥1

(Z∞ψ + 2)b · P[S = k] ≤ (λZ∞ψ + 2)b.

Combining the above display with (5.10) and (5.9) we get

E
[
X2
T1{|AT∈[a,b]|}

]
≤ (λZ∞ψ + 3)b.

We remind the reader of the definition of h (5.6). By using the above bound we can
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show (5.7):

E
[
h(Cx)

2

|Cx|1+ε

]
= E

[
X2
T

|AT |1+ε

]
≤
∑
i≥0

1

2i(1+ε)
E
[
X2
T1{2i≤|AT |≤2i+1}

]
≤ (Z∞ψ + 3)

∑
i≥0

2i+1

2i(1+ε)
≤ 2

λZ∞ψ + 3

1− 2−ε
.

(5.11)

Now we will combine our efforts to get the bound we want. Combining (5.3) and (5.5)

we get that

P [Arm(t)] ≤ 1

λ|Bs−1|

(
E

[∑
C∈C

h(C)

]
+ λc′sd−1

)
.

There exists some constant c′′ > 0 such that λc′sd−1

λ|Bs−1| ≤ c
′′s−1. We can now use Lemma

5.5 to find that

P [Arm(t)] ≤
(

1

|Bs−1|

∫
Bs

E
[
h(Cx)2

|Cx|1+ε

]
dx

) 1
2
(
|∂inBs|
|Bs−1|

) 1−ε
2

+ c′′s−1

Finally we apply (5.11). Notice that 1
1−2−ε ≤ 2ε−1 for ε ∈ (0, 1) and |∂

inBs|
|Bs| ≤ cdt

−1

for some constant cd depending only on the dimension.3 Thus, we can find some

cε = O(ε−
1
2 ) such that the following holds

P [Arm(t)] ≤
(
2
λZ∞ψ + 3

1− 2−ε

) 1
2
(
|∂inBs|
|Bs−1|

) 1−ε
2

+ c′′s−1 ≤ c0√
ε
t−

1
2
+ ε

2 .

■

5.3 Uniqueness

It is our goal in Section 6.3 to construct long paths inside a box. In this section we

will prove a bound on a certain uniqueness event which will allow us to ‘glue’ shorter

paths together. We define the following event for 0 < r < s:

U(r, s) := Uλ(r, s) :=

{There is at most 1 cluster intersecting both Br and B
c
s in ξ ∩ (Bc

r−1 ∩Bs+1)}.

Note that U(r, s) allows there to be no crossing. One can interpret U(r, s)c as a stronger

version of the two-arm event. We remind the reader of the notation τs(x, y) for the

3The bound follows from concavity of 1− 2−x on the interval [0, 1].
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probability that x ↔ y when only considering vertices in Bs (see Definition 2.2). The

following has been adapted to this setting from [CMT23].

Proposition 5.8. Assume λ > 0 such that θ(λ) > 0. There exists some χ ∈ (0, 1) and

c2 > 0 such that for all r ≥ 1 sufficiently large it holds that

P[Uλ(h(r), r)] ≥ 1− c2r−1/4,

where h(r) := exp(log(r)χ).

We remark that h(r) grows faster than log(r), but slower than rα for any α ∈ (0, 1)

as r →∞. We will denote the inverse of h(r) by H(r) = exp(log(r)1/χ). Accordingly,

H(r) grows superpolynomially, but subexponentially as r →∞.

Recall the definition of τλ(x, y), i.e. the restricted two-point function (2.4). It is equal

to the probability that x connects to y via at least one vertex in η. Similarly, we define

τλ,s(x, y) as the restricted two-point on ξ[ηx,y∩Bs]. By our assumptions on ψ it follows

immediately that if d(x, y) ≥ 1 then τλ,s(x, y) = τλ,s(x, y).

To prove the above Proposition 5.8 we require the following lemma which is adapted

from [CMT24].

Lemma 5.9. For all λ > 0, α ≥ 1 and r, s, t ∈ R such that 1 ≤ r ≤ s ≤ t/2 there

exists some constant c4 (depending on λ) such that

P[Uλ(r, t)c] ≤ c4 exp
(

2α

λrd−1

)
r2d−2sd

infx,y∈Br τ s(x, y)
P[Arm(t/2)]1−

1
α .

Remark 5.10. Due to extra challenges which arise from the MRCM the bound in the

above lemma is slightly weaker than the discrete equivalent in [CMT24]. Namely, the

discrete version does not require the 1− 1
α exponent or the related exp term.

A further difference is the requirement of the modified two-point function τ .

If we can get a uniform lower bound on the connection probability τs then we can get

Proposition 5.8.

Proof of Lemma 5.9. We remind the reader that ∂inBr is used to refer to the set {z ∈
Br | d(z,Bc

r) ≤ 1}, and that η⟨C⟩ = η \ ψC∗ η and (η | Cx = C) ∼ (η⟨C⟩ ∪ C).

For the event Uλ(r, t)
c to hold it is required that we find two distinct clusters crossing

the annulus Bt \Br. Each such cluster must contain a vertex in ∂inBr. By the Markov
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inequality and the Mecke equation we find that

P[Uλ(r, t)c] ≤ E

 ̸=∑
{x,y}⊂η∩∂inBr

1{x↔ Bc
t }1{y

\Cx←−→ Bc
t }


=
λ2

2

∫
∂inBr

∫
∂inBr

P [x↔ Bc
t , y ↔ Bc

t in ξ[ηy \ Cx]] dxdy.

We condition on the possible configurations of Cx. Given x, y ∈ ∂inBr we define the

following measure

κx,y(dC) = 1{C ∩Bc
t ̸= ∅, y ̸∈ C}P[C(x, ξ[ηx,y]) ∈ dC],

to represent all admissible components of x that reach Bc
t without connecting to y. We

condition on Cx = C:

P[Uλ(r, t)c] ≤
λ2

2

∫
∂inBr

∫
∂inBr

∫
P[y ↔ Bc

t in ξ[ηy \ C] | Cx = C]κx,y(dC)dydx.

By the Stopping Set lemma we can write

P [y ↔ Bc
t in ξ[ηy \ C] | Cx = C] = P

[
y ↔ Bc

t in ξ[ηy⟨C⟩]
]
.

To use the two-arm bound we want the component Cy to be ‘close to’, but not connected
to Cx = C, which we represent by y connecting to the points that are ‘deleted’ in η⟨C⟩,

i.e. ψC∗ η. We will treat the deleted points more carefully later.

For some admissible C we apply the FKG inequality to the events {y ↔ Bc
t in ξ[ηy⟨C⟩]}

and {y ↔ ψC∗ η in ξ[ηy ∩Bs]} (which are both increasing).

P
[
y ↔ Bc

t in ξ[ηy⟨C⟩]
]
≤

P
[
y ↔ Bc

t in ξ[ηy⟨C⟩], y ↔ ψC∗ η in ξ[ηy ∩Bs]
]

P
[
y ↔ ψC∗ η in ξ[ηy ∩Bs]

] . (5.12)

First we bound the denominator. To reach x from y one needs to first reach a neighbor

of x. It is easier to reach a neighbor of C than it is to reach a neighbor of x, since in

particular {x} ⊂ C. So we can bound the denominator by

P
[
y ↔ ψC∗ η in ξ[ηy ∩Bs]

]
≥ P[y ↔ ψx∗η in ξ[ηy ∩Bs]] = inf

x,y∈Br

τ s(x, y). (5.13)

Notice that (5.13) is now independent of x and y.

Next we bound the numerator. We want to marginalize over C. To do so correctly, we
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will need to define η⟨Cx⟩ and ψ
Cx
∗ η rigorously. Note that ψCx∗ η is difficult to define since

by definition Cx should not have any additional connections.

We start with two independent instances of an independent edge marking ξx = ξx[η]

and ξ
x

= ξ
x
[η]. Let Cx := Cx(ξ

x
). We now define ξ̃x := ξx[η⟨Cx⟩; Cx], where the

semicolon denotes the fact that Cx already has defined edges and will (by definition)

not share any edges with η⟨Cx⟩. We remark that ξ̃x has the same law as ξx | Cx = Cx
(this is a direct corollary of the Stopping Set lemma). The advantage of this coupling

is that we now have an explicit set of ‘deleted’ vertices ψCx∗ η that we can reason about.

These points can also be thought of as ‘sprinkled’ or ‘ghost’ points. This extra work is

required as it is ‘ψCx∗ η’ would not be well-defined otherwise. A similar construction is

used in [CD24]. We can now write:∫
P
[
y ↔ Bc

t in ξ[ηy⟨C⟩], y ↔ ψC∗ η in ξ[ηy ∩Bs]
]
κx,y(dC)

= P
[
Cx ∩Bc

t ̸= ∅, y ↔ Bc
t in ξ[ηy⟨Cx⟩

], y ↔ ψCx∗ η in ξ[ηy ∩Bs]
]
.

(5.14)

Note that in the process ηy⟨Cx⟩
we allow for y to be killed by Cx. This in particular

ensures that y ̸∼ Cx, as is required by our earlier choice of κx,y.

Figure 5-3: Arm event centered around a point z ∈ ψCx∗ η.

If the event in (5.14) holds we know that at least one ‘deleted’ point z ∈ ψCx∗ η connects

to Bc
t via two disconnected paths: once through the x component, and once through

the y component.

In particular, the event Armz(t−s) should hold for at least one z ∈ ψCx∗ η. To apply the

Arm upper bound from Proposition 5.6 we will first have to apply the Mecke equation
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(in the reverse direction) to avoid problems arising from x or y being pivotal themselves.

Hence, we get the following bound:

λ2

2

∫
∂inBr

∫
∂inBr

P
[
Cx ∩Bc

t ̸= ∅, y ↔ Bc
t in ξ[ηy⟨Cx⟩

], y ↔ ψCx
∗ η in ξ[ηy ∩Bs]

]
dydx

= E

 ̸=∑
{x,y}⊂η∩∂inBr

1
{
Cx ∩Bc

t ̸= ∅, y ↔ Bc
t in η⟨Cx⟩, y ↔ ψCx

∗ η,
}

≤ E

 ̸=∑
{x,y}⊂η∩∂inBr

∑
z∈ψCx

∗ η∩Bs

1 {Armz(Bt−s(z))}



Let us write X := |η ∩ ∂inBr|. The summand in the above display does not depend

on x or y. Hence, we can replace the sum by the number of (unordered) Poisson pairs

in η ∩ ∂inBr which is equal to 1
2(X

2 −X). Next, the point process ψCx
∗ η ∩ Bs can be

dominated by a Poisson point process of density λ1Bs . We then use the Mecke equation

to find:

E

 ̸=∑
x,y∈η∩∂inBr

∑
z∈ψCx

∗ η∩Bs

1 {Armz(Bt−s(z))}


= E

 ∑
z∈ψCx

∗ η∩Bs

1

2

(
X2 −X

)
1 {Armz(Bt−s(z))}


≤ λ

∫
Bs

E
[
X21{Armz(Bt−s(s))}

]
ds.

In the above inequality we use the fact that |η ∩ ∂inBr| increases by 1 whenever z ∈
∂inBr. We simply add 1 to X no matter the location of z. Furthermore, we bound
1
2(X

2+X) ≤ X2. Next, we apply the Hölder inequality with parameters α ∈ [0,∞] and
α
α−1 .

4 Then, using Lemma 5.4 to bound the Poisson moment in the second inequality:

λ

∫
Bs

E
[
X21{Armz(Bt−s(s))}

]
ds ≤ λ

∫
Bs

E[X2α]
1
αP[Armz(Bt−s(z))]

α−1
α ds

≤ λ3|Bs||∂inBr|2 exp
(

2α

λ|∂inBr|

)
P[Arm(t/2)]

α−1
α ,

(5.15)

where we use the fact that P[Armz(Bt−s(z))] ≤ P[Arm(t/2)]. Remember

Recall that (5.15) is an upper bound on the (integral of the) numerator of (5.12).

4When applying Hölder’s inequality we need to be careful to include the mark of z in E.
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Together with the lower bound on the denominator (5.13) we find that

P[Uλ(r, t)c] ≤ c4 exp
(

2α

λ|∂inBr|

)
λ3r2d−2sd

infx,y∈Br τ s(x, y)
P[Arm(t/2)]

α−1
α .

Since |Bs| ≍ sd and |∂inBr| ≍ rd−1, this gives us the desired bound. ■

We do not yet have a good lower bound on infx,y∈Br τ2r(x, y). We will construct a

lower bound via an iterative procedure based on the following lemma. We introduce

the following notation for some z ∈ Rd: let Uλ(r, t; z) represent the uniqueness event

Uλ(r, t) centered at z.

We remind the reader that (A2) refers to the existence of some c, δ > 0 such that

P[Bs ↔∞] ≥ 1− cs−δ holds for all s ≥ 1. The following lemma (along with the proof)

is adapted from [CMT24].

Lemma 5.11. Let λ > λc and δ > 0 as in (A2). Let m,u ∈ R≥1 such that m ≥ u1+δ.
Then

P[Uλ(u,m)c] ≤ δ

uδ
=⇒ ∀a, b ∈ Bu1+δ : τ2m(a, b) ≥ δ.

Remark 5.12. Note that Lemma 5.11 does not hold if we can choose the mark of a and

b in general, as it might be possible to choose arbitrarily unfavorable marks.

Figure 5-4: Gluing via paths to infinity and uniqueness events. The black dots represent
the balls Bu/2(xi). The gray arrows represent paths to infinity. The blue paths in
between the gray paths exist due to uniqueness. For sake of clarity I did not include
all paths.
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Proof. Let c, δ > 0 be as in (A2). We can assume furthers, without loss of generality,

that δ is sufficiently small such that θ(λ)24−3c2
δ ≥ 4δ holds.

Now let a, b ∈ Bu1+δ . Let n = ⌈4uδ⌉ ≤ 5uδ. We write xi := a+ i
n(b−a) for all i ∈ [[0, n]].

Then x0 = a and xn = b. Then ∥xi − xi+1∥2 ≤ u
2 .

We assume that a ↔ ∞ and b ↔ ∞ and Bu/2(xi) ↔ ∞ for all i ∈ [[1, n− 1]]. Then

either a ↔ b in B2m (as demonstrated in Figure 5-4), or, for some i ∈ [[1, n− 1]] we

find that U(u,m;xi)
c occurs. Thus, by the union bound:

P[a↔∞, b↔∞,∀i : Bu/2(xi)↔∞] ≤ τ2m(a, b) +
∑

i∈[[1,n−1]]

P[Uλ(u,m;xi)
c].

Note that for any q ∈ [0, 12 ] and p > 0 it holds that (1−q)p ≥ 4−qp. By FKG-inequality,

Assumption (A2), and the assumption that P [Uλ(u,m)c] ≤ δ
uδ
:

τ2m(a, b) ≥ P[a↔∞]P[b↔∞]P[Bu/2 ↔∞]n−1 − (n− 1)P[Uλ(u,m)c]

≥ θ(λ)2(1− c2δu−δ)3uδ − 3uδP[Uλ(u,m)c]

≥ θ(λ)24−3c2δ − 3δ.

Thus, by our assumption on δ that θ(λ)24−3c2
δ ≥ 4δ,

τ2m(a, b) ≥ δ.

■

The approach in the following proof is to use Lemma 5.9 together with Lemma 5.11.

Lemma 5.9 gives an upper bound on U(r, t)c, which we may use in order to lower bound

τλ(x, y) with Lemma 5.11. Each time we increase the scale, allowing us to iterate this

procedure and get a bound on any (sufficiently large) scale.

Proof of Proposition 5.8. Let µd be the volume of the unit ball in d dimensions. Let

δ ∈ (0, 14) so that it is compatible with Lemma 5.11. Let us restate Lemma 5.9, replacing

P[Arm(t/2)] with the bound from Corollary 5.7:

P[Uλ(r, t)c] ≤ C exp

(
2α

λµdrd−1

)
r2d−2sd

infx,y∈Br τ s(x, y)
log(t)

α−1
2α t−

α−1
2α . (5.16)

Now choose s = 2r. We write ε(r, t) := (λµd log(t)r
d−1)−

1
2 . Then we choose α =
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1
2ε(r, t)

−1 and drop the −ε(r, t) exponent on the log(t) term to find:

P[Uλ(r, t)c] ≤ C exp

(√
log(t)

λµdrd−1

)
2dr3d−2

infx,y∈Br τ2r(x, y)
log(t)

1
2 t−

1
2
+ε(r,t). (5.17)

As we are using the above equation repeatedly we let me remind the reader that we

assume that t ≥ 2r and t > e.

We will now define r0 and t0 to ensure our induction step later works. First, we

fix r0 ≥ 2 such that ε(r0, r
1+δ
0 ) ≤ 1

16 . Next, we can find t0 ≥ max(r1+δ0 , 2(C/δ2)
1
d )

such that P[Uλ(r0, t0)c] ≤ δ
rδ0

by (5.17). We can now use Lemma 5.11 to find that

infa,b∈B
r1+δ
0

τ2t0(a, b) ≥ δ.

We further require that for all t ≥ t0 it holds that

t
1
8 ≥ log(t)

1
2 exp

(√
log(t)

λµdr
d−1
0

)
, (5.18)

which is possible by inspection. This bound also holds for larger values of r0. In

particular, it will hold for subsequent induction steps.

We now choose r1 := r1+δ0 . We use (5.16) with r = r1, s = 2t0 and t = t1 := t64d0

together with infa,b∈B
r1+δ
0

τ2t0(a, b) ≥ δ. It follows that

P[Uλ(r1, t1)c] ≤

[
t
− 1

8
1 exp

(√
log(t1)

λµdr
d−1
1

)
log(t1)

1
2

][
t
− 1

16
+ε(r1,t1)

1

] [
t
− 1

16
1 2d

C

δ
r2d−21 td0

]
t
− 1

4
1

≤ δ

t
1/4
1

.

To clarify, the t
− 1

2
1 term is split into four parts, each separated by a square bracket.

We inspect each individually going from left to right.

1. By (5.18) we ensured that t
− 1

8
1 dominates the log terms, and so the first bracket

is less than one.

2. We reserve t
−1/16
1 to cancel the t

ε(r1,t1)
1 term, thus the second bracket is less than

one.

3. We use t
1/16
1 = t4d0 , which must be larger than 2d(C/δ2)r

(2d−2)
1 td0 by definition.

This term gives use the extra δ.

Finally, this leaves us with δ

t
1/4
1

.
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Now we repeat this argument to bootstrap this bound. Since δ

t
1/4
1

≤ δ
tδ1
, we can use

Lemma 5.11 again to find that infa,b∈B
r1+δ
i

τ2ti(a, b) ≥ δ. For general, for i ∈ N we

define ri := r1+δi−1 and ti := t64di−1. And so, by the same reasoning as above, we find:

P[Uλ(ri, ti)c] ≤
δ

t
1/4
i

.

We can choose χ ≤ log(1+δ)
log(2d+δ) so that ri ≤ exp(log(ti)

χ) = h(ti). ■

Corollary 5.13. Let λ > λc. Let δ0 > 0 be as in (A2). Then for all R sufficiently

large and all x, y ∈ BR it holds that

τ2R(x, y) ≥ δ.

Proof. We write Proposition 5.8 as P[Uλ(r,H(r))c] ≤ c2H(r)−1/4. We first check the

conditions of Lemma 5.11. Let δ > 0. We require that H(r) ≥ r1+δ. Since H grows

superpolynomially this condition holds for sufficiently large r.

Next we require that P[Uλ(r,H(r))] ≤ c2H(r)−1/4 ≤ δ
rδ
. By rearranging this equation

we can see that again it must hold for sufficiently large r due to the superpolynomial

growth of H.

Now we may apply Lemma 5.11, and the statement holds. ■
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Chapter 6

Grimmett-Marstrand

A very important result in percolation theory is the that in the supercritical phase

percolation should still occur in sufficiently large subsets of space. This was first char-

acterized by Grimmett and Marstrand in [GM90]. They show that in the supercritical

phase we still percolate in sufficiently big slabs of the form Slabl := R2 × [−l, l]d−2.

In this chapter we will prove two versions of this fact, first a qualitative version which

follows quickly from the results of the previous chapters. Next, a quantitative version,

which provides more insight into how large the slab needs to be.

For the rest of this chapter we assume (A2) and that d ≥ 3.

6.1 Statement

We will take a slightly different approach here more focused on developing techniques

related to sprinkling. This will have the advantage of giving us a quantitative result,

rather than just an existence result.

We take the ideas in the following section from [DKT21], in particular we use the

‘seedless’ renormalization scheme. We will use c to refer to any strictly positive constant

to simplify notation. To make this argument work we need to additionally assume that

ψ is spherically symmetric.

Theorem 6.1 (Quantitative Grimmett-Marstrand). Fix d ≥ 3 and λ > 0. Assume

that ψ spherically symmetric. There exists a constant C = C(d) > 0 such that the

following holds. Assume for some ε > 0 and 1 ≤ k < K < n < N < ∞ such that

K ≤ ε2n the following assumptions hold:
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(a)
∫
M P[om ↔ Λcn]ρ(dm) ≥ ε

(b) P[Λk ↔ ΛcN ] ≥ 1− exp(−1/ε)

(c) P[Uλ(k,K)c] ≤ exp(−1/ε) and P[Uλ(n,N)c] ≤ exp(−1/ε).

Then, we have

Pλ+Cε[o
Slab2N←−−−→∞] ≥ ε/2.

Note that for λ > λc we can fulfill these assumptions. We get (a) immediately by, i.e.

by choosing ε ∈ (0, θ(λ)/2). To ensure (b) holds we choose k such that

P[Λk ↔ ΛcN ]
(A2)

≥ 1− ck−δ ≥ 1− exp(−1/ε)

holds. We can solve for k by taking the (−δ)-th root of ck−δ ≤ exp(−1/ε) which yields

k ≥ c1/δ exp( 1
δε).

Recall that we defined H(r) = exp(log(r)1/χ) for χ ∈ (0, 1).

We now set (k,K, n,N) := (k,H(k),H2(k), H3(k)). Thus, by Proposition 5.8, we have

P[Uλ(k,K)c] ≤ c2K−1/4 ≤ c2 exp
(
log(k)1/χ

)−1/4
≤ exp(−1

ε
),

which can be rearranged to yield k ≥ exp(4χ(1/ε− log(c2))
χ).

Finally, choosing

k = max

{
c1/δ exp

(
1

δε

)
, exp (4χ(1/ε− log(c2))

χ)

}
ensures items (b) and (c) hold.

Lemma 6.2 (Square root trick). Let n ∈ Z≥1. Let A1, . . . , An be increasing events.

Then,

max
i∈[[1,n]]

P[Ai] ≥ 1−

1− P

 ⋃
i∈[[1,n]]

Ai

1/n

.

Proof. By the FKG inequality, and the fact that Aci are decreasing, we know that

P

 ⋃
i∈[[1,n]]

Ai

 ≤ 1−
∏

i∈[[1,n]]

P[Aci ] ≤ 1−
(
1− max

i∈[[1,n]]
P[Ai]

)n
.
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The result follows by solving for maxi∈[[1,n]] P[Ai]. ■

6.1.1 Points

We remind the reader of the notation Λn := [−n, n]d. We will require two lemmas

before we proceed with the proof of Theorem 6.1.

1. Lemma 6.3 shows that (with the same conditions as Theorem 6.1) a sufficiently

large set of inserted vertices will, with high probability, connect to one of the

quarter-faces of Λn (defined below).

2. Lemma 6.5 says that if a connection event with inserted vertices holds with suffi-

ciently high probability, then an associated connection event involving sprinkling

will also hold with high probability.

In the upcoming proofs we will use the following notation for the sake of compactness:

{A K←→ B} := {A↔ B in ξ ∩K},

where K ⊆ Rd and A and B are either point sets, point measures or subsets of Rd.

We will combine these lemmas to perform the ‘seedless’ renormalization described in

[DKT21]. Let i ∈ [[1, d]]. We define the i-th ‘quarter-face’ of ΛN as:

Fi(N) := {(x1, . . . , xd) | xi ∈ [N,N + 1), ∀j ̸= i : xj ∈ [0, N + 1)} .

Note that the name ‘quarter-face’ is only accurate in 3d. In d dimensions each face has

2d−1 ‘quarters’, meaning that the hypercube has 2dd quarter-faces in total.

Lemma 6.3. Assume (a), (b) and (c) hold. Then there exists some c, β > 0 (depending

only on ψ and d) such that for a.e.- C ∼ C(ηo, o) with diam(C) ≥ n we have for all i

P[C
ΛN+1←−−→ Fi(N) in ξ[η ∪ C]] ≥ 1− β exp(−c/ε).

Note, here we ‘overlay’ C and η.

Proof. Throughout this proof we reserve the symbols c̃1, c̃2, . . . to refer to strictly pos-

itive constants that depend only on d and ψ.

By the Square root trick and assumption (b) we find that for all i ∈ [[1, d]]:

P[Λk
ΛN←→ Fi(N)] ≥ 1− exp(−1/(2ddε)). (6.1)
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This is the only point where we require the assumption that ψ is spherically symmetric.

We assume without loss of generality that C ⊂ Λn. This can be done as C ∩ Λn

connecting to Fi(N) implies that all of C will still make the same connection. Consider

x1, . . . , xl ∈ C such that Qj := xj + ΛK+1 are all disjoint and contained in Λn+1. We

also define a smaller box Q′j := xj + Λk. We can and do write l = ⌈c̃1/ε2⌉ for some

constant c̃1. We define the following events

Ej := {xj ↔ Qcj} ∩ Uλ(k,K;xj)

Bj := {Q′j ↮ ΛcN}.

By (a) and (c) together we have

P[Ej ] ≥ P[xj ↔ Qcj ]− P[Uλ(k,K)c]

≥ ε− exp(−1/ε) ≥ ε/2.

Since each the events Ej lives on ΛK+1 + xj , they are independent, thus

P

 ⋃
j∈[[1,l]]

Ej

 ≥ 1− (1− ε/2)l ≥ 1− 2e−c̃2εl ≥ 1− 2ec̃3/ε,

where we use 1− x ≤ e−x.

Next we bound P[Bj ], by observing that at least half of the faces of xj+ΛN are outside

of ΛN . It follows from (6.1) that

P[Bj ] ≤ P
[
Q′j ↮ (xj + ∂extΛN ) ∩ ΛcN

] (6.1)

≤ exp

(
− 1

2ddε

)
.

By the union bound we find

P

 ⋃
j∈[[1,l]]

Bj

 ≤ l exp(− 1

2ddε

)
≤ exp(−c̃4/ε),

where the last inequality uses the fact that l ≤ c̃1/ε
2 + 1. Now assume there exists at

least one i such that Ej \Bj occurs. Then we know that xj ↔ Qcj and Q
′
j ↔ ΛcN (from

Bc
j ) both happen. Furthermore, we know that these two paths must be connected. In
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particular C ↔ ΛcN occurs. And so:

P[C ↔ ΛcN ] ≥ P

 ⋃
j∈[[1,l]]

Ej \Bj

 ≥ P

 ⋃
j∈[[1,l]]

Ej

− P

 ⋃
j∈[[1,l]]

Bj

 ≥ 1− 2e−c̃5/ε.

Finally, by the above display, (6.1) and (c)

P[C ΛN←→ Fi(N)] ≥ P[Λn ↔ Fi(N), C ↔ ΛcN , Uλ(n,N)]

≥ 1− βe−c̃6/ε,

for some β > 0. ■

Remark 6.4. By inspection of the above proof, in particular that we assume C ⊂ Λn,

we can also see that we need to use at least one neighbor of C, thus

P[ψC∗ η
ΛN+1←−−→ Fi(N) in ξ[η]] ≥ 1− β exp(−c/ε).

This will allow us to use the result of Lemma 6.3 for Lemma 6.5 below.

For Lemma 6.3 to be useful we require a way to convert probabilities between ‘overlaid’

points and probabilities on ξλ. We want to be able to say that if some connection event

is very likely for a given point-set A that it continues to be likely if these points can

only connect to η via some extra sprinkling η̃. This can be interpreted as ‘closing all

the edges of A’.

We will use the Stopping Set lemma. We remind the reader of the notation ξ[η, η′]

defined in (2.1). It consists of the edges between η and η′ and η and itself, but not η′

and itself. The following we adapt from [DKT21, Lemma 10].

Lemma 6.5. For any γ > 0, δ ∈ (0, 14) and λ > 0 there exists some κ > 0 (depending

on γ, δ and λ, but not ε) such that for any ε ∈ (0, δ) and any thinning function g with

compact support and any finite set A ⊂ X satisfying the following relation:

P[ψA∗ η ↔ g∗η in ξ[η]] ≥ 1− exp(−γ/ε), (6.2)

we have

P
[
ψA∗ η̃ ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η̃]
]
≥ 1− δ,

where η ∼ λ−ppp and η̃ ∼ κε-ppp.
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Proof. Let ε > 0 so that (6.2) holds. Note that

P[ψA∗ η ↔ g∗η in ξ[η]] = P[ψA∗ η ↔ g∗η in ξ[η⟨A⟩, ψ
A
∗ η]]

In words this means that it suffices to consider paths that start at a neighbor of A and

never return to any neighbor of A.

Furthermore, we can now see that we can sample η⟨A⟩ separately from ψA∗ η. To make

this explicit we introduce a new Poisson point process η̃L of (varying) intensity L > 0,

independent of everything else. We can then write

P
[
ψA∗ η ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η]
]
= P

[
ψA∗ η̃λ ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η̃λ]

]
.

We define the following set of points that share an edge with A and are connected to

g∗η without using any other points that are connected to A:

WL :=
∣∣{x ∈ η̃L ∣∣ x ∼ A, x↔ g∗η in ξ[η⟨A⟩ ∪ {x}]

}∣∣ .
Let L > λ and notice that if we take a λ/L thinning of ψA∗ η̃L that we recover ψA∗ η̃λ. In

particular, one way the connection event ψA∗ η̃λ ↔ g∗η can fail is that WL < n for some

n ≥ 1 and each of vertices die in the λ/L-thinning. In symbols:

P[ψA∗ η̃λ ↮ g∗η] ≥ P[WL < n]

(
1− λ

L

)n−1
. (6.3)

On the other hand, one way the connection can take place for ψA∗ η̃κε is that WL ≥ n

and at least one vertex survives a κε
L -thinning. In symbols, we get:

P
[
ψA∗ η̃κε ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η̃κε]

]
≥ P[WL ≥ n]

(
1−

(
1− κε

L

)n)
(Using (6.3)) ≥

(
1− P[ψA∗ η̃λ ↮ g∗η]

(1− λ
L)

n−1

)(
1−

(
1− κε

L

)n)
(Using (6.2)) ≥

(
1− exp(−γ/ε)

(1− λ
L)

n−1

)(
1−

(
1− κε

L

)n)
.

(6.4)

The proof now follows by optimizing over n. We will see that n = L
γ
ε
+log

(
κε
λ

)
κε+λ suffices

(but is not strictly optimal). This choice of n is found by taking the derivate of

1 − exp(−γ/ε)
(1− λ

L
)n−1

− (1 − κε
L )n and setting the result equal to 0, i.e. we ignore the mixed
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term from (6.4). By substituting n in (6.4) and letting L→∞ we find that

P
[
ψA∗ η̃κε ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η̃κε]

]
≥
(
1− exp

(−κγ + λ log(κελ )

κε+ λ

))(
1− exp

(−κγ − κε log(κελ )
κε+ λ

))
≥ 1− exp

(
− γκ

κε+ λ

)(
exp

(
λ log(κελ )

κε+ λ

)
+ exp

(−κε log(κελ )
κε+ λ

))
.

We can bound the sum of exponentials by rewriting x = κϵ
λ , which gives x

1
x+1 +x−

x
x+1 .

Using the weighted inequality of arithmetic and geometric means, i.e. ta + (1 − t)b ≥
atb1−t with a = x, b = 1 and t = 1

x+1 gives 2 x
1+x ≥ x

1
x+1 , which can be rearranged to

yield

x
1

x+1 + x−
x

x+1 ≤ 2

for all x > 0. This inequality is sharp at x = 1.

Finally, by the above display, and using that ε ≤ δ we find that:

P
[
ψA∗ η̃κε ↔ g∗η in ξ[η⟨A⟩, ψ

A
∗ η̃κε]

]
≥ 1− 2 exp

(
− γκ

κδ + λ

)
.

Choosing κ as follows
−λ log(δ/2)
γ + δ log(δ/2)

≤ κ

is sufficient. ■

6.1.2 Proof of Theorem 6.1

Proof of Theorem 6.1. The overall structure of this proof will be to build an iterative

exploration of Slab3N by tiling it with overlapping boxes that we index with Z2. For

every x ∈ Z2 we write

Λx := Nx+ ΛN and Λ̃x := Nx+ Λ3N .

Let η be a λ-Poisson point process in Slab2N . For every x ∈ Z2 we let ηx be a κε-

Poisson point process in Λ̃x, where κ is chosen later. The ηx are all independent of each

other and from η. We will prove that the event o ↔ ∞ in ηtotal := η ∪ (
⋃
x ηx) ∪ {o}

occurs with probability at least ε/2.

Fix any ordering of the edges E(Z2). Let η0 := η ∪ {o}. Let A0 := {o} and B0 := ∅.

Let t ≥ 0 and Xt := (At, Bt). To define Xt+1 given Xt we consider the next edge
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e ∈ E(Z2), such that one endpoint is in At, and the other endpoint is in (At ∪Bt)c. As
such, we view At as the open cluster and Bt as the boundary.

Let e be the next admissible edge and let x be the endpoint of e not in At ∪Bt, then

ηt+1 := ηt ∪ ηx and Xt+1 :=

(At ∪ {x}, Bt) if o↔ Λx in ηt+1

(At, Bt ∪ {x}) else
.

We have the following properties two properties:

• η∞ :=
⋃
t≥0 ηt ⊂ ηtotal := η0 ∪

⋃
x∈Z2 ηx.

• If Xt percolates then o
η∞←→∞.

We now wish to prove P[X percolates | o↔ Λco in η ∪ {o}] ≥ 1/2.

We require the following classic result from [Gri99, Lemma 7.24].

Lemma 6.6. If for the random exploration Xt = (At, Bt) there exists some q >

psitec (Z2) such that

P[Bt+1 = Bt | X0, . . . , Xt] ≥ q a.s. for all t ≥ 0,

then P[|A∞| =∞] ≥ c(q) > 0 where c(q)
q↗1−−−→ 1. If |A∞| =∞ we say that the process

X percolates.

In the case where no admissible edge exists the condition of the above Lemma is

satisfied. Now let e and x be as before. Consider the cluster of o in each iteration

(C(ηs, o))s≤t, and let (Cs)s≤t be an admissible (deterministic) choice for these random

clusters. We require

P[Ct ↔ Λx in ηt ∪ ηx | C(ηt, o) = Ct] ≥ q.

We can not directly use the stopping set lemma here because the connection event we

are considering contains the cluster we need to remove for the stopping set lemma.

Instead we look to employ Lemma 6.3.

By assumption x is a neighbor of some cube that our process has already reached. This

ensures that there is at least one box x′ + ΛN which shares a quarter face with our

target box Λx, such that diam(Ct ∩ Λx′) ≥ n. Furthermore, the box x′ + ΛN ⊂ Λ3N
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Figure 6-1: We can place a box around a point x′ ∈ Ct such that at least one quarter
face of x′ + ΛN is contained in Λx. The largest box represents Λ̃x.

Thus, by Lemma 6.3:

P[ψCt
∗ η ↔ Λx in ξ[ηt+1]] ≥ 1− β exp(−c/ε).

The above display fulfills the condition of Lemma 6.5 to get

P[ψCt
∗ ηx ↔ Λx in (ηt)⟨Ct⟩ ∪ ηx] ≥ 1− δ.

By an application of the Stopping Set lemma we get

1− δ ≤ P[ψCt
∗ ηx ↔ Λx in (ηt)⟨Ct⟩ ∪ ηx]

= P[Ct ↔ Λx through ηx in ηt ∪ ηx | C(ηt, o) = Ct]

= P[Ct ↔ Λx in ηt ∪ ηx | C(ηt, o) = Ct].

Now by Lemma 6.6 we are finished. ■
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6.2 Improving Uniqueness

We can now apply the Grimmett-Marstrand result to get better bounds on the unique-

ness event U(r,R). The approach is to first establish a better bound on connection

within a box, and use that to ensure connection within an annulus via an ”orange

peeling” argument from [Gri99].

For all t, L ∈ R≥1 we define Tt(L) to be [−t, t]d−1 × [−L,L]. The following lemma and

proof are adapted from [Gri99, Lemma 7.78]

Lemma 6.7. Let d ≥ 3 and λ > λc. There exist L ∈ R≥1 and a strictly positive

constant δ = δ(λ, L) such that

P[x↔ y in ξx,y ∩ Tt(L)] ≥ δ,

for all x, y ∈ Tt−L( L
3
√
d
) and for all t ≥ L.

Proof. Let q = 1
3
√
d
. We define the slab St(L) := [−t, t]2 × [−L,L]d−2. We first prove

that there exists some δ0 and L > 1 sufficiently large such that

P[x↔ y in ξx,y ∩ St(L)] ≥ δ0, (6.5)

holds for all x, y ∈ St−L(qL).

Let QNE(L) = [−L,∞)2 × [−L,L]d−2, where ‘NE’ stands for northeast. We similarly

define QNW , QSW , QSE . Since λ > λc, we may assume by Theorem 6.1 that we can

find some L such that λ > λc(Q
NE(qL)).1 Let us write

θ := P[o QNE(qL)←−−−−→∞] > 0.

Let s, l > 0. We define GNE(s, l) := QNE(l) ∩ Λs+l to be the intersection of the NE

quadrant with a box. We define GNW , GSW and GSE in an analogous manner. Let

HNE
↑ (s, l) := [−l, s+ l]× [s+ l, s+ l + 1]× [−l, l]d−2,

HNE
→ (s, l) := [s+ l, s+ l + 1]× [−l, s+ l]× [−l, l]d−2

be the upper and right exterior boundary respectively. We define HNW
↑ , HNW

← , HSW
← ,

HSW
↓ , HSE

↓ and HSE
→ accordingly.

1By inspection of the proof and the fact that psitec (Z2
≥0) > 0.
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Figure 6-2: The left diagram shows the connection event in (6.7) from the top. The
right diagram shows the same event from the side. The point y is shown in blue, and
the origin o is shown in black.

Since {o QNE(qL)←−−−−→∞} implies {∪i∈{↑,→}o
GNE(s,L/2)←−−−−−−→ HNE

i (s, qL)} we find by the union

bound and symmetry that

P[o GNE(s,qL)←−−−−−→ HNE
↑ (s, qL)] ≥ θ/2. (6.6)

Without loss of generality let y ∈ St−L(qL) such that y1 ≤ y2 ≤ 0. Consider the event

that

Ey = {o
GNW (t−L,qL)←−−−−−−−−→ HNW

← (t− L, qL)}

∩ {o GSE(t−L,qL)←−−−−−−−→ HSE
↓ (t− L, qL)}

∩ {y y+GNE(t−L+|y1|,qL)←−−−−−−−−−−−−→ HNE
↑ (t− L+ |y1|, qL)}.

(6.7)

In words, the above event ensures that the origin connects to the west side of the north-

west quadrant and the south side of the of southeast quadrant of St−L(qL). Further-

more, it ensures that y connects to the north side of the box. This event is illustrated

in Figure 6-2.

By geometry, the event Ey ensures that the paths of y and o ‘cross’ somewhere in the

two-dimensional sense in the box [−t + L, t − L]2. By the nature of the MRCM the

closest vertices will not directly overlap, but they will be within a distance of 1 (again in

the two-dimensional sense). In the remaining d− 2 dimensions the maximum distance

is dictated by the thickness of the slab and is thus 3qL in every dimension. Thus, by
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the Pythagorean theorem, the maximum distance that the cluster of y and the cluster

of o could be separated in the event (6.7) is at most L.

There is a scenario where the paths do not have to cross, if y is sufficiently close to

the left side of the box that the left boundary of y + GNE(t − L + |y1|, qL) is outside

the inner slab St−L(qL). But this path can at most protrude by qL, and so the above

argument holds. Note that although we assumed y1 ≤ y2 ≤ 0, we can find an event Ey

for all y ∈ St−L(qL) by making the needed adjustments.

The paths crossing is not sufficient for o and y to connect. We can ensure connectivity

using a sprinkling argument. Suppose the event Ey holds for λ′ = λc+λ
2 , which can

be achieved by fixing a sufficiently large L. Then, there is a strictly positive, albeit

small, probability that the closest points of the clusters Co and Cy connect via only

the sprinkled points of intensity λ − λ′. More precisely, for L fixed as above, the

infimum infx,y∈BL/2
P[x BL←→ y in ξ[ηx,yλ−λ′ ]] =: δ1 is strictly positive.2 Furthermore, as

the connection is only along sprinkled points, it is independent of Ey.

Hence, by independence of the sprinkling event, the FKG inequality, and (6.6) we find

P[y ↔ o ∈ ξy,o ∩ St(L)] ≥ δ1(
1

2
θ)3 =: δ2 > 0.

Finally, to recover (6.5) we use the FKG inequality again, together with our bound on

the Arm event from Corollary 5.7. Then,

P[x↔ y in ξx,y ∩ St(L)] ≥ P[Ex, Ey, Armo(L)
c]

≥ δ22 − P[Arm(L)],

where we use the union bound and then the FKG inequality to get the final line. Hence,

by Corollary 5.7, and choosing L sufficiently large, we find that (6.5) holds.

2This can be demonstrated by explicitly constructing a path. See e.g. [FPR11] for a similar
construction.
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Let x = (x1, . . . , xd) ∈ Tt−L(qL). We construct the following sequence of points

s0 = x

s1 = (0, x2, x3, . . . , xd)

s2 = (0, 0, x3, . . . , xd)

...

sd−3 = (0, . . . , 0, xd−2, xd−1, xd)

sd−2 = (0, . . . , 0).

We claim that

P[sj ↔ sj+1 in ξsj ,sj+1 ∩ Tt(L)] ≥ δ0 for j ∈ [[0, d− 3]] . (6.8)

First note that

sj , sj+1 ∈ (0, . . . , 0, xj+3, . . . , xd2 , xd−1, 0)

+ [−qL, qL]j × [−t+ L, t− L]2 × [−qL, qL]d−j−2.

The region on the right is a rotated and shifted version of St−L(qL) that is a subset

of Tt(L). We can similarly place the larger slab St(L) around the same point in the

above display, and it is also a subset of Tt(L). Hence, (6.8) follows from our earlier

claim (6.5).

Hence, by FKG and Corollary 5.7

P[x↔ y in ξx,y ∩ Tt(L)] ≥ δ2(d−2)0 − (2d− 3)P[Arm(L)].

Hence, we can find some L sufficiently large that the Lemma holds. ■

The following lemma and proof are adapted from [Gri99, Lemma 7.89]

Lemma 6.8. Let λ > λc. Then there exists some α, r0 ∈ R>1 and c ∈ R>0 such that

for all r ≥ r0 it holds that

P[U(r, αr)] ≥ 1− exp(−cr).

Proof. The core of this proof relies on an “orange peeling” argument from [Gri99]. We

work on a modified version of the uniqueness with d-cubes instead of balls to better
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apply Theorem 6.1. We can do this without problem by inscribing and circumscribing

a ball around the relevant cubes, which will yield the same result up to some constant

factors.

We start in a similar manner to Lemma 5.9. We consider x, y ∈ ∂inBr. We define the

event

U(r, αr;x, y) := {x↔ Λcαr, y ↔ Λcαr, x ̸Λαr←−→ y}.

Let q be as in Lemma 6.7. We pick L and δ = δ(λ,L) like in Lemma 6.7 and L large

enough such that

δd+2 − (d+ 1)P[Arm((1− q)L)] ≥ c, (6.9)

for some c > 0.

Then we can write for all r ≥ 3L

αr = r + (2 + q)LK

for some K > 0.

Let r′ := r + (1 + q)L. For k ∈ [[0, ⌊K⌋]] and x, y ∈ ∂inΛr we define

Ak(x, y) := {x↔ Λcr′+k(2+q)L, y ↔ Λcr′+k(2+q)L, x ̸
Λr+k(2+q)L←−−−−−−→ y},

to be the event that x and y leave the box Λr′+k(2+q)L, without connecting in the

smaller box Λr+k(2+q)L. These boxes are chosen so that we may use Lemma 6.7. The

intuition is that Ak(x, y) is the event that ensures that the components of x and y

reach the next layer without connecting in the current layer. Notice that

U(r, αr;x, y)c ⊆ A⌊K⌋−1(x, y) ⊆ A⌊K⌋−2(x, y) ⊆ · · · ⊆ A1(x, y),

and so,

P[A⌊K⌋−1(x, y)] ≤
⌊K⌋−1∏
k=1

P[Ak(x, y) | Ak−1(x, y)].

We claim that

P[Ak(x, y) | Ak−1(x, y)] ≤ 1− δ′,

for some δ′ > 0. This implies

P[AK(x, y)] ≤ (1− δ′)⌊K⌋.
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Figure 6-3: The blue inner ring represents Dk and the thin brown outer ring represents
D′k. The first ‘peel’ of the orange. Note the overshoot of the slabs is qL.

We define
Dk := Λr+k(2+q)L−qL \ Λr+(k−1)(2+q)L

D′k := Λr′+k(2+q)L \ Λr′+k(2+q)L−qL,

such that D′k−1 ⊂ Dk. The event Ak(x, y) ensures that x and y reach D′k without

connecting in Dk. With an eye towards using Lemma 6.7, Dk will play the role of

Tt(L), whereas D
′
k will play the role of Tt−L(qL).

Now for any z ∈ η ∩Λr we define Vk(z) to be the set of all u ∈ D′k. Notice that on the

event Ak+1(x, y) the sets Vk(x) and Vk(y) are non-empty and disjoint.

In other words, given that the event Ak−1(x, y) occurs, the event Ak(x, y) can occur

only if for all u ∈ Vk−1(x) and v ∈ Vk−1(y) we have that u ̸Dk←→ v. This is a necessary,

but not sufficient condition (which is exactly what we require for the following upper

bound).

We can see that

P[Ak(x, y) | Ak−1(x, y)] ≤ sup{P[u↮ v in ξx,y ∩Dk] : u, v ∈ D′k−1}.

Now we use Lemma 6.7 to prove that P[u Dk←→ v in ξu,v] ≥ δd+2 for all u, v ∈ D′k−1.
The region Dk can be thought of as the union of 2d overlapping slices, where each

slice is a shifted and rotated version of Trk(L) = [−rk, rk]d−1 × [−L,L], where rk :=
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r − qL + k(2 + q)L. We also define r̃k := r − L + k(2 + q)L, which corresponds to

Trk−L(qL).

Let z0, . . . , zd be the following collection of points in Λrk . For each i ∈ [[0, d]] the first i

entries of zi are given by r̃k and the final d− i entries are given by −r̃k. In particular

z0 = (−r̃k, . . . ,−r̃k) and zd = (r̃k, . . . , r̃k).

For each consecutive pair zi, zi+1, there exists a copy of Trk−L(qL) in Dk containing

both zi and zi+1. Hence,

P

 ⋂
i∈[[1,d]]

{zi−1 ↔ zi},
⋂

i∈[[0,d]]

Armzi((1− q)L)c


≥ P

 ⋂
i∈[[1,d]]

{zi−1 ↔ zi}

− (d+ 1)P[Arm((1− q)L)]

≥ δd − (d+ 1)P[Arm((1− q)L)],

where we first use the union bound and then FKG.

Hence, by the same procedure as in the above display and our assumptions on L in

(6.9), we find that

P[u↔ v in ξu,v ∩Dk] ≥ P

u↔ z0, v ↔ zd,
⋂

i∈[[1,d]]

{zi−1 ↔ zi},
⋂

i∈[[0,d]]

Armzi(qL)
c


≥ δd+2 − (d+ 1)P[Arm((1− q)L)] ≥ c.

Note that we require the Arm events to ensure that the paths actually connect as it

would not be sufficient for u to connect to v only through one of the zi. ■

6.3 Proof of Theorem 5.1

To prove Theorem 5.1 we will require a lower bound on the probability that a randomly

placed point in Λs reaches a large ball BK at the origin. We achieve this by chaining

together the previously defined uniqueness events with guarantees that the relevant

annuli are crossed.

6.3.1 Gluing paths

First we show that a uniformly randomly picked vertex in some box Λt reaches a large

central ball with sufficiently high probability.
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Lemma 6.9. Let λ > λc. Let ε > 0. Then there exists a K > 0 and an t0 > 0, such

that for all t > t0 we have

Pλ[Vt
Λt←→ BK ] ≥ θ(λ)− ε,

where Vt is a uniformly picked point in Λt with a mark assigned by ρ.

We first need the following definitions.

Definition 6.10 (k-dependence). Let (Xx)x∈Zd be a Bernoulli3 random field. For any

k ∈ N we call X a k-dependent field if for all finite A,B ⊂ Zd such that all vertices

in A have a distance (say ℓ∞) of at least k to all vertices in B, then the collections of

random variables (Xx)x∈A and (Xx)x∈B are independent.

Definition 6.11 (Stochasic domination). Let (Xx)x∈Zd and (Yx)x∈Zd be two Bernoulli

random fields. We say say that X stochastically dominates Y if for every increasing

function f : {0, 1}Zd → [0,∞) it holds that E[f(X)] ≥ E[f(Y )].

We will need the following Lemma as used in [Pen03, Theorem 9.12] and originally

proved in [LSS97], see also [Gri99, Theorem 7.65].

Lemma 6.12. Let ε ∈ (0, 1/4), k ∈ N and (Xz)z∈Zd a k-dependent Bernoulli random

field. Then there exists some ε′ ∈ (0, ε) such that if P[Xz = 1] ≥ 1− ε′ for all z ∈ Zd,
we find that (Xz) stochastically dominates independent Bernoulli site percolation with

parameter 1− ε.

Lemma 6.13. Let ε > 0. Then there exists some ε′ > 0 such that the following holds.

Let (Xz)z∈Zd be a (1 − ε′)-Bernoulli site percolation. Then we have for all s ≥ 1 and

all v ∈ Λs ∩ Zd that

P[o (Xz)∩Λs←−−−−→ v] ≥ 1− ε. (6.10)

Proof of Lemma 6.13. This proof follows from a Peierls type argument. We first show

that if o ̸Λs∩Zd

←−−−→ v then there must exist some ‘blocking set’ which prevents the connec-

tion. This step will be purely deterministic. We then estimate the size of this blocking

set, which in turn will give us a bound on the probability that o connects to v.

Let s > 0 and v ∈ Λs. Let ω ∈ {0, 1}Λs∩Zd
be a configuration. Suppose o ̸ ω←→ v. Let

us call C = Co(ω) the set of sites that are connected to the origin. Now let D be the

connected component of v in Λs∩Zd \C (i.e. ignoring the configuration of ω). Finally,

we define C+ := Dc ⊃ C.
3i.e. {0, 1}-valued.

97



Now, C+ and D are disjoint connected sets whose union makes Λs ∩ Zd. Let ∆ :=

D ∩ ∂extC+ be all the sites in D which are adjacent to some site in C+. By [Pen03,

Lemma 9.6] we know that ∆ is ∗-connected4. Furthermore, all sites of ∆ are vacant in

ω and every possible path in Λs ∩Zd from o to v uses at least one vertex in ∆. We call

any set fulfilling these three criteria a blocking set.

Therefore, the event o ̸ ω←→ v is equivalent to the existence of a blocking set. It is

immediate that the cardinality |∆| is greater than or equal to diam∞∆ := max{∥x −
y∥∞ : x, y ∈ ∆}. We claim that

diam∞∆ ≥ d∞(o,∆) ∧ d∞(v,∆)

4
, (6.11)

where d∞ is the distance in the ∞-norm.

Suppose the claim is false, then 4 diam∞∆ < d∞(∆, o). Now let □ be the smallest

d-cube which contains ∆. Naturally, diam∞∆ = diam∞□. Then by the triangle

inequality we find that

d∞(o,□) ≥ d∞(o,∆)− diam∞∆

≥ 3 diam∞∆.
(6.12)

By the same argument we also find that d∞(v,□) ≥ 3 diam∞∆. This causes a contra-

diction against ∆ being a blocking set as we can now construct a path from o to v that

avoids □ and thus ∆.

For this construction we can assume without loss of generality that all coordinates of

v = (v1, . . . , vd) are positive. For each permutation π of {1, 2, . . . , d} we can define a

path γπ which starts at o and moves to v coordinate by coordinate according to the

ordering of π. So for the first segment of the path γπ moves along coordinate π(1) from

0 to zπ(1).

Let Qk := [[−k diam∞∆, k diam∞∆]]d. Observe that by (6.12) ∆ can not intersect Q3

or z +Q3. However, for any two distinct permutations π and π′ it holds that

d∞(γπ \ (Q3 ∪ z +Q3), γπ′ \ (Q3 ∪ z +Q3)) ≥ 3 diam∞∆.

Hence, ∆ can block at most one of these paths, and so our claim (6.11) holds5. Further,

note that all of these paths will be fully contained in Λs, and hence the claim holds for

4Any two points in ∆ can be joined by a path in ∆ of ℓ∞-adjacent vertices.
5This is where we use that ∆ is ∗-connected.
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all s.

Finally, let ε > 0. Then

P[o↮ z] = P[∃ a blocking set ∆]

≤
∞∑
k=1

P[∃ a blocking set ∆, |∆| = k].

We can now use (6.11) to observe that the blocking set must have at least one vertex

in Q4 or z + Q4, each of which has at most kd vertices. We know by [Pen03, Lemma

9.3] that for any given starting point there are at most (23
d−1)k ∗-connected sets of

cardinality k. Finally, each vertex in ∆ is open with probability ε′. Hence,

P[o↮ z] ≤
∞∑
k=1

ε′k(2kd)(23
d−1)k.

Hence, we can find an ε′ > 0 small enough so that (6.10) holds. ■

In the following proof we will write Uλ(s, t; z) for the event Uλ(s, t) centered at z ∈ Rd.
We remind the reader that Assumption (A2) states that for every K > 0 it holds that

Pλ[BK ↔∞] ≥ 1− cK−δ.

Proof of Lemma 6.9. Let ε > 0. We now want to define a dependent site percolation

on KZd that is coupled to our MRCM in such a way that we may use Lemmas 6.12

and 6.13. We will say that a site z ∈ KZd is open if

{BK(z)↔ Bc
αK} ∩ Uλ (K,αK; z)

holds. This guarantees that if we have a sequence of neighboring open sites in KZd

that we can find a corresponding path in the MRCM. More explicitly, for any path

(zi)
f
i=0 ⊂ KZd of open sites such that ∥zi − zi+1∥1 ≤ K for all i ≤ f − 1, we can find

a corresponding path from BK(z0) to BK(zf ) in
⋃f
i=0BαK(zi) in ξλ. Note that by the

union bound, Assumption (A2) and Lemma 6.8,

P[z open] ≥ 1− cK−δ − exp(−cK),

which can be chosen arbitrarily close to 1. We can now define a Bernoulli random field

(Xx)x∈KZd on KZd. In particular, by Lemmas 6.12 and 6.13 we can choose K1 ∈ R≥0
sufficiently large so that P[v (Xz)∩Λs←−−−−→ o] ≥ 1− ε/3 holds uniformly over s and v.
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Next we consider the random point Vt. One way for {Vt
Λt←→ BK} to occur, is to

‘connect’ Vt to the Bernoulli site percolation system on KZd. Then we can use our

connection result on the site percolation. Let us write πKZd(Vt) to denote the nearest

site in the lattice KZd to Vt. Let R = (1 +
√
d/2)K. The ball BR(Vt) will contain the

ball BK(πKZd(Vt)). Thus, the events {Vt ↔∞} and Uλ(R,αR;Vt) will ensure that Vt

connects to BK(πKZd(Vt)). Fix K2 ∈ R≥0 so that P[Uλ(R,αR)] ≥ 1− ε/3

Now we fix K = max{K1,K2}. We still have to ensure that our path stays within

our chosen box Λt. We fix t0 := αR
1−(1−ε/3)1/d . Now, for every t ≥ t0 it holds that the

probability that Vt is within distance αR of the boundary is less than ε/3. By the

union bound we find that:

P[Vt
Λt←→ BK ] ≥ P[Vt ↔∞, Uλ(R,αR;Vt), Vt ∈ Λt−H(R), πKZd(Vt)

Λt∩Zd

←−−→ o, ]

≥ θ(λ)− ε/3− ε/3− ε/3.

Hence the result holds. ■

Remark 6.14. The weaker bound on Uλ given in Proposition 5.8 does not suffice to

prove the above Lemma. The problem occurs as the outer ball grows too fast to utilize

the renormalization argument. In particular, the dependence of the random Bernoulli

field grows unbounded as R→∞.

6.3.2 Proof of Theorem 5.1

We essentially restate the proof given in [Pen22].

Proof of Theorem 5.1. Assume λ > λc. Let ε > 0 and choose K > 0 such that P[BK ↔
∞] > 1− ε, P[Vs ↔ BK ] > θ(λ)− ε and P[Uλ(K,αK)] > 1− ε, using Lemma 6.12 and

Lemma 6.8 for the latter two. Consider the sum

Ns :=
∑

x∈ηλ∩Λs

1{x↔ BK in ξλ[Λs]}.

The idea is that L1(Λs) ⊂ Ns with high probability. Let Vs and Ws be uniformly

distributed points in Λs. By the Mecke formula we write E[Ns] = λ(2s)dP[Vs
Λs←→ BK ].

Thus,

lim inf
s→∞

s−dE[Ns] ≥ λ(θ − ε).

Next, let

N ′s :=
∑

x∈ηλ∩Λs

1{|Cx(ηλ ∩ Λs)| ≥ s1/2},
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be the number of vertices in components of size at least s1/2. Using the Mecke formula

we find that E[N ′s] = λ(2s)dP[|CVs(ηVs ∩ Λs)| ≥ s1/2]. Thus,

lim
s→∞

(2s)−dE[N ′s] = λθ.

Using the Mecke formula for double sums we find that

E[N ′s(N
′
s − 1)] = λ2(2s)2dP[|CVs(η

Vs,Ws

λ ∩ Λs)| ≥ s1/2, |CWs(η
Vs,Ws

λ ∩ Λs)| ≥ s1/2].

Notice that the two events in the above display are independent whenever Vs and Ws

have a distance of more than 2s1/2. The probability that Vs and Ws are closer than

2s1/2 is of order s−d/2. Hence,

lim
s→∞

(2s)−2dE[N ′s(N ′s − 1)] = λ2θ2,

which in particular means that (2s)−dN ′s → λθ in L2 and hence in probability.

We see by a simple coupling that (Ns −N ′s)+ ≤ η(BK+s1/2) must hold. It follows that

s−dE[(Ns −N ′s)+]→ 0 as s→∞. Hence,

lim sup
s→∞

E[s−d(N ′s −Ns)+] = lim sup
s→∞

E[s−d(N ′s −Ns)] ≤ λε

By Markov’s inequality, lim sups→∞ P[s−d(N ′s −Ns) ≥ ε1/2] ≤ λε1/2. It follows that

lim sup
s→∞

P[s−dNs ≤ λθ − 2ε1/2]

≤ lim sup
s→∞

(
P[s−dN ′s ≤ λθ − ε1/2] + P[s−d(Ns −N ′s) ≤ −ε1/2]

)
≤ λε1/2

By our choice of K it holds that P[Uλ(K,αK)] ≥ 1 − ε. If s is sufficiently large and

Uλ(K,αK) holds we find that L1 ≥ Ns − ηλ(BαK), since all points in Ns outside BαK

must lie in the same component. Therefore,

lim sup
s→∞

P[(2s)−dL1 ≤ λθ − 3ε1/2]

≤ lim sup
s→∞

(P[(2s)−dNs ≤ λθ − 2ε1/2] + P[(2s)−dη(BαK) ≥ ε1/2] + P[Uλ(K,αK)c])

≤ λε1/2 + ε.

Conversely,

P[(2s)−dL1 ≥ λ(θ + ε)] ≤ P[(2s)−dN ′s ≥ λ(θ + ε)]
s→∞−−−→ 0.
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This with the previous display shows s−dL1
P−→ λθ.

If (2s)dλ(θ + ε) > s1/2 and L1 + L2 ≥ (2s)dλ(θ + ε) then either N ′s ≥ (2s)dλ(θ + ε) or

L1 + s1/2 ≥ (2s)dλ(θ + ε). Hence, P[(2s)−d(L1 + L2) > λ(θ + ε)] → 0. It follows that

(2s)−dL2
P−→ 0. ■
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Suren Jansen, Jan Schmidt, and Anita Winter. “The age-dependent random

connection model”. In: Queueing Systems 93 (2019), pp. 309–331. doi: 10.

1007/s11134-019-09625-y.

[Gra+22] Peter Gracar, Markus Heydenreich, Christian Mönch, and Peter Mörters.

“Recurrence versus transience for weight-dependent random connection mod-

els”. In: Electronic Journal of Probability 27 (2022), pp. 1–31.

[Gri99] Geoffrey Grimmett. Percolation. Vol. 321. Grundlehren der mathematischen

Wissenschaften. Springer-Verlag Berlin Heidelberg, 1999.

[GS98] Geoffrey R. Grimmett and Andrew M. Stacey. “Critical probabilities for

site and bond percolation models”. In: The Annals of Probability 26.4 (Oct.

1998), pp. 1788–1812.

105

https://doi.org/10.1007/s00220-015-2480-z
https://doi.org/10.1007/s00220-015-2480-z
https://www.ihes.fr/~duminil/publi/2017percolation.pdf
https://www.ihes.fr/~duminil/publi/2017percolation.pdf
http://www.jstor.org/stable/3212112
https://arxiv.org/abs/2412.04539
https://arxiv.org/abs/2412.04539
https://arxiv.org/abs/2412.04539
https://doi.org/10.1007/s10955-011-0122-1
https://doi.org/10.1007/s10955-011-0122-1
https://doi.org/10.1007%2Fs10955-011-0122-1
http://www.jstor.org/stable/80004
http://www.jstor.org/stable/80004
https://doi.org/10.1007/s11134-019-09625-y
https://doi.org/10.1007/s11134-019-09625-y


[Har60] Theodore E. Harris. “A lower bound for the critical probability in a certain

percolation process”. In: Mathematical Proceedings of the Cambridge Philo-

sophical Society 56.1 (1960), pp. 13–20. doi: 10.1017/S0305004100034241.

[Hey+19] Markus Heydenreich, Remco van der Hofstad, Günter Last, and Kilian

Matzke. Lace Expansion and Mean-Field Behavior for the Random Con-

nection Model. 2019. doi: 10.48550/ARXIV.1908.11356. url: https:

//arxiv.org/abs/1908.11356.

[HS94] Takashi Hara and Gordon Slade. “Mean-Field Behaviour and the Lace Ex-

pansion”. In: Probability and Phase Transition. Ed. by Geoffrey Grimmett.

Vol. 420. NATO ASI Series. Dordrecht: Springer, 1994, pp. 87–122. doi:

10.1007/978-94-015-8326-8_6.

[IY12] Srikanth K. Iyer and D. Yogeshwaran. “Percolation and connectivity in AB

random geometric graphs”. In: Advances in Applied Probability 44.1 (Mar.

2012), pp. 21–41. doi: 10.1239/aap/1331216643.

[Kes80] Harry Kesten. “The critical probability of bond percolation on the square

lattice equals 1/2”. In: Communications in Mathematical Physics 74.1 (1980),

pp. 41–59. doi: 10.1007/BF01197577.

[Lic+23] Lyuben Lichev, Bas Lodewijks, Dieter Mitsche, and Bruno Schapira. “On

the first and second largest components in the percolated random geometric

graph”. In: Stochastic Processes and their Applications 164 (Oct. 2023),

pp. 311–336. doi: 10.1016/j.spa.2023.07.008.

[LP17] Günter Last and Mathew Penrose. Lectures on the Poisson Process. In-

stitute of Mathematical Statistics Textbooks. Cambridge University Press,

2017. doi: 10.1017/9781316104477.

[LSS97] T. M. Liggett, R. H. Schonmann, and A. M. Stacey. “Domination by prod-

uct measures”. In: The Annals of Probability 25.1 (1997), pp. 71–95. doi:

10 . 1214 / aop / 1024404279. url: https : / / doi . org / 10 . 1214 / aop /

1024404279.

[LZ17] Günter Last and Sebastian Ziesche. “On the Ornstein–Zernike equation

for stationary cluster processes and the random connection model”. In:

Advances in Applied Probability 49.4 (2017), pp. 1260–1287. doi: 10.1017/

apr.2017.37.

[Men86] M. V. Menshikov. “Coincidence of critical points in percolation problems”.

In: Soviet Mathematics Doklady 33 (1986), pp. 856–859.

[MPS97] Ronald Meester, Mathew D. Penrose, and Anish Sarkar. “The random con-

nection model in high dimensions”. In: Statistics & Probability Letters 35.2

(1997), pp. 145–153. issn: 0167-7152. doi: https://doi.org/10.1016/

106

https://doi.org/10.1017/S0305004100034241
https://doi.org/10.48550/ARXIV.1908.11356
https://arxiv.org/abs/1908.11356
https://arxiv.org/abs/1908.11356
https://doi.org/10.1007/978-94-015-8326-8_6
https://doi.org/10.1239/aap/1331216643
https://doi.org/10.1007/BF01197577
https://doi.org/10.1016/j.spa.2023.07.008
https://doi.org/10.1017/9781316104477
https://doi.org/10.1214/aop/1024404279
https://doi.org/10.1214/aop/1024404279
https://doi.org/10.1214/aop/1024404279
https://doi.org/10.1017/apr.2017.37
https://doi.org/10.1017/apr.2017.37
https://doi.org/https://doi.org/10.1016/S0167-7152(97)00008-4
https://doi.org/https://doi.org/10.1016/S0167-7152(97)00008-4


S0167 - 7152(97 ) 00008 - 4. url: https : / / www . sciencedirect . com /

science/article/pii/S0167715297000084.

[MR96] R. Meester and R. Roy. Continuum Percolation. Cambridge Tracts in Math-

ematics. Cambridge University Press, 1996. isbn: 9780521475044. url: https:

//books.google.co.uk/books?id=TBAR3u84114C.

[MS88] M. V. Men’shikov and A. F. Sidorenko. “The Coincidence of Critical Points

in Poisson Percolation Models”. In: Theory of Probability & Its Applications

32.3 (1988), pp. 547–550. doi: 10.1137/1132083. eprint: https://doi.

org/10.1137/1132083. url: https://doi.org/10.1137/1132083.

[NPY19] Ivan Nourdin, Giovanni Peccati, and Xiaochuan Yang. Restricted hypercon-

tractivity on the Poisson space. 2019. arXiv: 1904.08211 [math.PR].

[Pac78] J. K. Pachl. “Disintegration and compact measures”. In:Mathematica Scan-

dinavica 43 (1978), pp. 157–168. doi: 10.7146/math.scand.a-11771.

[Pei36] R Peierls. “On Ising’s model of ferromagnetism”. In: Mathematical Proceed-

ings of the Cambridge Philosophical Society 32 (1936), pp. 477–481.

[Pen03] Mathew D. Penrose. Random Geometric Graphs. Oxford studies in prob-

ability. Oxford University Press, 2003. isbn: 9780198506263. url: https:

//books.google.de/books?id=M38e7nPGSCsC.

[Pen14] Mathew D. Penrose. “Continuum AB percolation and AB random geomet-

ric graphs”. In: Journal of Applied Probability 51A (2014), pp. 333–344.

url: http://www.jstor.org/stable/43284126.

[Pen16] Mathew D. Penrose. “Connectivity of soft random geometric graphs”. In:

The Annals of Applied Probability 26.2 (2016). issn: 1050-5164.

[Pen22] Mathew D. Penrose. Giant component of the soft random geometric graph.

2022. doi: 10.48550/ARXIV.2204.10219. url: https://arxiv.org/abs/

2204.10219.

[Pen91] Mathew D. Penrose. “On a Continuum Percolation Model”. In: Advances

in Applied Probability 23.3 (1991), pp. 536–556. issn: 00018678. url: http:

//www.jstor.org/stable/1427621 (visited on 05/16/2023).

[Pen93] Mathew D. Penrose. “On the Spread-Out Limit for Bond and Continuum

Percolation”. In: The Annals of Applied Probability 3.1 (1993), pp. 253–276.

issn: 10505164. url: http://www.jstor.org/stable/2959739 (visited on

09/22/2022).

[SMj17] Paulo Serra, Michel M, and jes. “Dimension Estimation Using Random Con-

nection Models”. In: Journal of Machine Learning Research 18.138 (2017),

pp. 1–35. url: http://jmlr.org/papers/v18/16-232.html.

107

https://doi.org/https://doi.org/10.1016/S0167-7152(97)00008-4
https://doi.org/https://doi.org/10.1016/S0167-7152(97)00008-4
https://www.sciencedirect.com/science/article/pii/S0167715297000084
https://www.sciencedirect.com/science/article/pii/S0167715297000084
https://books.google.co.uk/books?id=TBAR3u84114C
https://books.google.co.uk/books?id=TBAR3u84114C
https://doi.org/10.1137/1132083
https://doi.org/10.1137/1132083
https://doi.org/10.1137/1132083
https://doi.org/10.1137/1132083
https://arxiv.org/abs/1904.08211
https://doi.org/10.7146/math.scand.a-11771
https://books.google.de/books?id=M38e7nPGSCsC
https://books.google.de/books?id=M38e7nPGSCsC
http://www.jstor.org/stable/43284126
https://doi.org/10.48550/ARXIV.2204.10219
https://arxiv.org/abs/2204.10219
https://arxiv.org/abs/2204.10219
http://www.jstor.org/stable/1427621
http://www.jstor.org/stable/1427621
http://www.jstor.org/stable/2959739
http://jmlr.org/papers/v18/16-232.html


[Tal94] Michel Talagrand. “On Russo’s Approximate Zero-One Law”. In: The An-

nals of Probability 22.3 (1994), pp. 1576–1587. issn: 00911798, 2168894X.

url: http://www.jstor.org/stable/2245033 (visited on 01/27/2025).

[Tos+16] Gabriele Tosadori, Ivan Bestvina, Fausto Spoto, Carlo Laudanna, and Gio-

vanni Scardoni. “Creating, generating and comparing random network mod-

els with NetworkRandomizer”. In: F1000Research 5 (2016), p. 2524. doi:

10.12688/f1000research.9203.3.

[Zie16] Sebastian Ziesche. “Sharpness of the phase transition and lower bounds

for the critical intensity in continuum percolation on Rd”. In: Annales de

l’Institut Henri Poincare, Probabilites et Statistiques 54 (July 2016). doi:

10.1214/17-AIHP824.

108

http://www.jstor.org/stable/2245033
https://doi.org/10.12688/f1000research.9203.3
https://doi.org/10.1214/17-AIHP824

	Notation and Terminology
	Introduction
	History & Motivation
	Some applications

	Thesis Aims

	The Random Connection Model
	The Poisson Point Process
	Construction of the MRCM
	Adding points
	Subsets
	Thinnings

	Quantities of Interest

	Literature Review
	Examples of the MRCM
	Hard Models
	Soft Models

	Overview of previous results
	Historical results for Continuum Models
	Large components
	Recent advances for the (M)RCM
	Recent Advances in Discrete Models

	Fundamental Tools
	Mecke formula
	Margulis-Russo Formula
	Stopping Set Lemma


	The Subcritical Regime
	Assumptions and Results
	Auxiliary Result
	Sharpness
	Proof of Sharpness
	Item I
	Item II

	Proof of Theorem 4.4
	Exponential decay in volume
	Properties of the inverse correlation length
	Proof of Theorem 4.4

	Large Poisson Deviations

	The Supercritical Regime
	Statement
	Outline
	Assumptions
	Preliminary Results

	Two-arm Bound
	Uniqueness

	Grimmett-Marstrand
	Statement
	Points
	Proof of Theorem 6.1

	Improving Uniqueness
	Proof of Theorem 5.1
	Gluing paths
	Proof of Theorem 5.1



