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Introduction Niclas Küpper

1 Introduction

Pricing and hedging portfolios of derivatives is a decisive part of risk management

in many industries. The Nobel Prize winning approach discovered by Robert C.

Merton, Fischer Black, and Myron Scholes, now commonly called the Black-

Scholes options pricing model, assumes a “complete market” where it is possible

to set up a dynamic self-financing portfolio. This portfolio aims to replicate

the derivative’s payoff, thus eliminating any risk posed by the underlying asset.

Then, since we assume an arbitrage free market, the “correct” price is given

by the expected value of the option with respect to a martingale measure, also

called risk-neutral measure, which is also precisely the price of implementing the

replicating portfolio. This elegant solution is, however, not realistic.

In real markets trading is restricted by transaction costs, liquidity constraints,

discrete trading opportunities, and market impacts. The Black-Scholes approach

is not equipped to handle these restrictions. If we were to implement the Black-

Scholes hedging portfolio (in continuous time) with transaction costs, we would

incur an infinite cost in any trading interval no matter how small. Furthermore,

the predicted price of the Black-Scholes model relies on calculating “greeks”,

which requires directly observable quantities like the spot price but also difficult

to measure and generally non-constant variables such as the parameters of the

underlying market model, whose assumptions might not be true.

To solve these problems, we turn to a deep learning approach. This fairly

recent invention has dominated classical methods in many fields, from medical

research to robotics. We choose this tool to generate trades that can address all of

the above limitations. This approach only requires a market scenario generator,

a risk measure, trading frictions/restrictions, and specified trading instruments.

Our focus will be the effect of transaction costs on the pricing and hedging

of call and binary options. We will first recreate classical results in markets

without transaction costs to demonstrate the capability of the deep approach on

known problems. Then we move on to explore the effects of transaction costs and

investigate how different models of networks perform in such market conditions.

Finally we will look at convergence properties and other trade restrictions.

1.1 Related Works

Hedging and pricing in markets with frictions has been widely studied and many

diverse approaches have been tried. Two more classical approaches include [11]

and [4]. In the former, the classical delta hedge, that we derive in Section 3.4, is

modified by adapting the volatility, making it dependent on the proportionality
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constant of the transaction costs. Specifically,

σ̂2(σ2, k,∆t) = σ2
[
1 +

√
2/π

σ
√
∆t

k
]
,

where σ is the original volatility, k is the original transaction cost, and ∆t is the

discretization time step. This method was proven to converge to replicate the

option as the step size converges to zero, despite the transaction costs. In the

latter a Hamilton-Jacobi-Bellman equation is derived from a utility maximiza-

tion problem, which leads to a non-linear partial differential equation describing

regions when to buy sell or hold. This pde is then solved using discrete time

dynamic programming methods.

These ideas are expanded upon in [14] where the authors allow for a non-

linear variable volatility term. Using utility maximization they not only uniquely

identify the volatility term but also quantify the probability of missing the hedge

in terms of the proportional transaction costs and the chosen utility function.

Both [4] and [14] restrict themselves to European call options and exponential

utility. We expand upon these ideas by allowing any kind of derivative and risk

measure, including risk defined by utility functions.

Optimization under convex risk measures is also widely studied in other

circumstances. In [8] a broader class of hedges was investigated where one is

allowed to, in addition to trading the underlying, buy or sell vanilla options at

the beginning of the trading period. So if, for a given convex risk measure ρ we

would want to hedge an exotic claim Ge we would minimize

ρ
(
− λ ·G−Ge + (θ · dS)T + x+ λ · g

)
over (θ, λ) where θ is a trading strategy and λ is the number of vanilla options

bought. Here G is the vector of outcomes of the vanilla options and g is a vector

of the market prices for these options.

The paper [3] on deep hedging covers many similar results to this thesis. It

shows also that, both theoretically and practically, neural networks can hedge

various options under different convex risk measures. It also replicates a result of

price convergence as proportional transaction costs converge as in [13]. Of course

to build up the theoretical framework we need the well known result that deep

feed forward networks satisfy universal approximation properties, see e.g. [7].

2 Setting: Discrete Time Market

The following setting is the same as in [3]. We consider a financial market in

discrete time with a finite time horizon T with trading dates 0 = t0 < · · · <
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tn = T . We fix a finite1 probability spaceΩ withN elements. Market information

is represented by I = (Ik)k=0,...,n where Ik represents the information at time

tk and takes values in Rr. We then denote the filtration generated by I as

F = (Fk)k6n.

Our market then consists of d hedging instruments where the prices are given

by an Rd valued F-adapted stochastic process S. Note that it is not required

that an equivalent martingale measure exists for S.

Our trading strategies are then given by an Rd valued F-adapted stochastic

process δ = (δk)k≤n, where δk = (δik)i6d. Here δik represents the agents holdings

in the i-th asset at the k-th time step.

We will consider binary2 and European call options given respectively by

evaluating

f(x) = 1R≥K
(2.1)

f(x) = max(0, x−K) (2.2)

on ST , for some K. We call K the strike price. Although these options are not

path dependent, this framework can also hedge path dependent options such as

American options. See Appendix 7.5.

2.1 Hedging

Profits and losses when trading with strategy δ while being exposed to some

risky asset Z are given by

PLT (Z, p, δ) = −Z + p+ (δ · S)T − CT (δ), (2.3)

where p is some initial cash injection (which is allowed to be negative) and Ct

is a function describing the transaction costs incurred by following the trading

strategy δ. The cumulative gains and losses of trading are described by:

(δ · S)tk =
∑
j6k−1

δj(Sj+1 − Sj). (2.4)

The cost of buying a position ∆ ∈ Rd in S at time tk will be ck(∆). Then

the total cost incurred is given by

CT (δ) =

n∑
k=1

ck(δk − δk−1). (2.5)

1 We are considering numerical solutions, hence a finite probability space more accu-

rately describes this setting.
2 The author will freely switch between calling these options binary and digital. They

are the same thing.
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We assume that the function ck is non-negative and upper semi-continuous.

Further we assume that ck(0) = 0, i.e. not trading costs nothing. Examples

include

• Proportional transaction costs: for cik > 0 define ck(∆) :=
∑
i6d c

i
kS

i
k|∆i|.

• Fixed transaction costs: for cik > 0 define ck(∆) :=
∑
i6d c

i
k1|∆i|≥ε.

Apart from the initial cash injection, all trading is self-financing, i.e. we run

additionally a bank account with zero interest rate. If we call ηt the holdings in

our bank account at time t, then at any given moment, for a given strategy δ,

our total value is described by

Vt(δ) =

d∑
i=1

δitS
i
t + ηt − Ct(δ),

i.e. the value of the stocks we own plus the money in our bank account minus

incurred transaction costs. We then say that our trading is self-financing if

Vt(δ) − ((δ · S)t − Ct(δ)) is constant in t. This means that money moves into,

or out of, the bank account only as a result of trading; profits and losses, and

transaction costs. This uniquely defines the bank account ηt and so we will not

explicitly mention it for the rest of the thesis.

This framework can be expanded to also consider trade restrictions, in which

case we would replace δk withHk(δk) everywhere for some Fk-measurable restric-

tion functions Hk. Restriction functions and their effect on trading are explored

more in Section 5.4.

2.2 Convex Risk Measures

Since we are not necessarily dealing with a complete market and we have trading

frictions, there does not necessarily exist a unique replication strategy for every

liability Z. Thus we need to find some other optimality criterion to define an

acceptable minimal price. We consider optimality under convex risk measures as

studied in [5] and [8].

Let X be the set of random variables X : Ω → R. Note that it is not

necessary to assume that a specific probability measure is given on Ω, however

we will consider a risk measure dependent on a probability measure for the rest

of this thesis.

Definition 2.1. Consider we have asset positions X1, X2 ∈ X . We call ρ : X →
R a convex risk measure if it satisfies the following:

• Monotonically Decreasing: X1 ≥ X2 a.s. =⇒ ρ(X1) 6 ρ(X2).
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• Convex: ρ(αX1 + (1− α)X2) 6 αρ(X1) + (1− α)ρ(X2), for α ∈ [0, 1].

• Cash-invariant: ρ(X + c) = ρ(X)− c, for c ∈ R.

We further call ρ coherent if it also satisfies:

• Positive Homogeneity: For λ ≥ 0 we have ρ(λX) = λρ(X).

Lastly we say ρ is normalized if ρ(0) = 0.

The financial motivation behind monotonicity is clear: A strictly greater pay-

off poses a smaller risk. Convexity is motivated by weighing the avoidance of

losses more highly than potential profits. Finally, cash-invariance comes from

interpreting ρ(X) as the needed cash to be indifferent to some position X. In

particular, by cash-invariance we get

ρ(X + ρ(X)) = 0. (2.6)

The above equation can be interpreted as saying that for a liability Z, ρ(−Z)

is a fair price since that is the amount of cash that needs to be added to the

position to have zero risk.

Example 2.1. 1. The simplest example of a convex risk measure is negative

expectation

ρ(X) = E[−X], X ∈ X ,

it clearly satisfies all of the required conditions to be a coherent convex risk

measure. It is, however, not a financially realistic measure, as it weighs profits

and losses equally. It requires the choice of a probability measure.

2. A commonly used measure is the entropic risk measure given by

eγ(X) =
1

γ
log
(
E[exp(−γX)]

)
, X ∈ X , γ > 0.

It also requires the choice of a probability measure. The entropic risk measure

is also a good example of an incoherent risk measure, this can easily be

demonstrated with a Bernoulli random variable. It also exhibits a behaviour

called constant absolute risk aversion, which implies, among other things,

that optimal holding of an asset is independent of the level of initial wealth

[1] [12]. We call γ the risk aversion parameter, it intuitively describes how

risk-averse the agent is. Larger γ’s describe a stronger avoidance of risk.

3. The worst case measure defined by

ρmax(X) = − ess inf
ω∈Ω

X(ω)

5
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is an example of a convex risk measure independent of probability measures

(up to equivalence). Note that in our setting we can replace the essential in-

fimum by a minimum since we have a finite space. It is the most conservative

measure in the sense that for any other (normalized) convex risk measure ρ

we have that

ρ(X) 6 ρ(ess inf
ω∈Ω

X(ω)) = ρmax(X).

2.3 Optimal Hedging

Let us consider the following optimization problem for a given convex risk mea-

sure ρ and liability Z ∈ X :

π(−Z) = inf
δ∈H

ρ(−Z + (δ · S)T − CT (δ)). (2.7)

where H is the family of Rd-valued F adapted processes, i.e. the family of all

possible trading strategies. We now define the indifference price p(Z) as the price

the trader needs to charge to be indifferent to the position −Z when optimally

trading with respect to the convex risk measure. In other words, there should be

no difference between being exposed to −Z having charged p(Z) while trading

all available assets and not doing anything. That is

π(−Z + p(Z)) = π(0). (2.8)

We then calculate p(Z) by iterating through possible prices and choosing whichever

is closest to π(0). In the case π is itself cash-invariant we can make calculating

p(Z) simpler by rewriting Equation 2.8 as

p(Z) = π(−Z)− π(0). (2.9)

Then we only have to solve the optimization problem once.

We can see that without transaction costs, this price coincides with the price

of the replicating portfolio (if it exists). The following lemma is taken from [3].

Lemma 2.2. Suppose CT ≡ 0. For any δ∗ ∈ H and p0 ∈ R we find that

p(Z) = p0 for Z = p0 + (δ∗ · S)T .

Proof. For any δ ∈ H, the assumptions and cash-invariance of ρ imply

ρ(−Z + (δ · S)T − CT (δ)) = p0 + ρ(([δ − δ∗] · S)T ).

Now taking the infimum over δ ∈ H on both sides and using the fact that

H− δ∗ = H we find:

π(−Z) = p0 + inf
δ∈H

ρ(([δ − δ∗] · S)T ) = p0 + π(0).

�
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If we assume ρ to be normalized and S to be a continuous P−martingale, for

some probability measure P, then π(0) = 0 for certain convex risk measures and

the equation we want to solve becomes finding a price such that π(−Z+p(Z)) =

0. When we then write this out with the definition of π we get

inf
δ∈H

ρ(−Z + (δ · S)T + p(Z)− CT (δ)) = 0. (2.10)

Lemma 2.3. Let S be a continuous P−martingale. Then, for all normalized

convex risk measures of the form ρ(X) = f−1Ef(−X), with f convex, we have

π(0) = 0.

Proof. First we show π(0) 6 0. This follows directly from the fact that δ ≡ 0 is

a valid strategy, and so

π(0) = inf
δ∈H

ρ((δ · S)T − CT (δ)) 6 ρ(0) = 0.

Next we show π(0) > 0. We use Jensen’s inequality:

π(0) = inf
δ∈H

f−1E
[
f
(
− ((δ · S)T − CT (δ))

)]
> inf
δ∈H

E[−((δ · S)T − CT (δ))] = 0.

�

In particular, the above lemma holds for the entropic risk measure, which is

our main focus. This lemma also holds for shortfall and power risk, which can

both be represented in the above way.

3 Neural Networks

3.1 Universal Approximation Theorem

The key idea continued from [3] is using neural networks to approximate hedging

strategies. This works not only well due to the approximation properties of neural

networks but also their numerical efficiency in finding feasible solutions. First,

let us recall the definition of a neural network.

Definition 3.1 (Neural Network). Let L,N0, . . . NL ∈ N, σ : R→ R and for

all l ∈ {1, . . . , L} let Wl : RNl−1 → RNl be an affine function. We then call a

function F : RN0 → RNL defined as

F (x) = WL ◦GL−1 ◦ · · · ◦G1, with Gl = σ ◦Wl (3.1)

a (fully connected feed forward) neural network. The activation function σ is

applied componentwise. We call N0 and NL the input and output dimension,

7
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respectively, L the number of layers and N1, . . . , NL−1 the dimensions of the

hidden layers.

We write the affine functions Wl(x) = Alx + bl for Al ∈ RNl×Nl−1 and

bl ∈ RNl . We call Al the edge weights and bl the biases.

Finally denote by N σ
∞,d0,d1 the set of all deep neural networks with input

dimension d0 and output dimension d1.

The next two results are versions of the Universal Approximation Theorem

as in [7, Theorems 1 and 2].

Theorem 3.1. If σ is unbounded and nonconstant, then N σ
∞,k,1 is dense in

Lp(µ) for all finite measures µ on Rk.

Theorem 3.2. If σ is continuous, bounded and nonconstant, then N σ
∞,k,1 is

dense in C([0, 1]d).

The proofs to these theorems can be found in Appendix 7.2.

These results easily generalize to Rd1 valued neural networks, since every

component of such a network is itself an R valued neural network. For more

details, see [7].

Next we let (N σ
M,d0,d1

)M be a family of neural networks, such that

1)
⋃
M≥1

N σ
M,d0,d1

= N σ
∞,d0,d1 .

2) N σ
M,d0,d1

⊂ N σ
M+1,d0,d1

, for all M ≥ 1

3) for all M ≥ 1 we can write N σ
M,d0,d1

= {F θ | θ ∈ ΘM,d0,d1}

with ΘM,d0,d1 ⊂ Rq for some q ∈ N depending on M.

(3.2)

Here θ is a vector of all the possible weights, i.e. the matrix and bias vector

entries for the affine functions Gl. Natural choices include N σ
M,d0,d1

being the

family of networks with at most M non-zero weights, at most height M or at

most depth M . When σ is clear from context we define NM,d0,d1 := N σ
M,d0,d1

.

3.2 Approximating Hedges

We now define the family of hedges that can be represented by neural networks

in a given set NM,d0,d1 as

HM =
{

(δk)k6n−1 ∈ H
∣∣ δk = Fk(I0, . . . , Ik, δk−1), Fk ∈ NM,r(k+1)+d,d

}
=
{

(δk)k6n−1 ∈ H
∣∣ δk = F θk(I0, . . . , Ik, δk−1), θk ∈ ΘM,r(k+1)+d,d

} (3.3)

8
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Then we can replace Equation 2.7 with the following variant:

πM (−Z) := inf
δ∈HM

ρ(−Z + (δ · S)T − CT (δ))

= inf
θ∈ΘM

ρ(−Z + (δθ · S)T − CT (δθ)).
(3.4)

Remark 3.3. If S is a Markov process, Z = g(ST ) not path dependent and we

work with simple market frictions, then we can write the optimal strategy in the

simpler form of δk = fk(Ik, δk−1) for some fk : Rr+d → Rd. This will be useful

for implementing the neural networks later.

Next we show that the strategies in HM can approximate the strategies in

H, and so by extension the prices p(Z), arbitrarily well. The following result was

taken from [3].

Proposition 3.1. For any X ∈ X it holds that

lim
M→∞

πM (X) = π(X).

Proof. We first note that the argument δk−1 in Fk in Equation 3.3 is redundant,

since δk−1 is itself a function of I0, . . . , Ik−1. For the purpose of this proof we

will thus rewrite

HM =
{

(δk)k6n−1 ∈ H
∣∣ δk = Fk(I0, . . . , Ik), Fk ∈ NM,r(k+1)+d,d

}
.

Now since HM ⊂ HM+1 ⊂ H for all M , it follows that πM (X) ≥ πM+1(X) ≥
π(X). Thus it suffices to show that for any ε > 0 there exists M ∈ N such that

πM (X) 6 π(X) + ε.

Let ε > 0. By definition, there exists δ ∈ H such that

ρ(X + (δ · S)T − CT (δ)) 6 π(X) +
ε

2
. (3.5)

Since δk is Fk-measurable there exists some measurable function fk : Rr(k+1) →
Rd such that δk = fk(I0, . . . , Ik) for each k. Since Ω is finite δk is bounded and

so the components of fk are in L1(Rr(k+1), µ), where µ is the law of (I0, . . . , Ik)

under P.

Thus we can use Theorem 3.1 to find Fk,n ∈ N∞,r(k+1),d such that Fk,n(I)

converges to fk(I) in L1(P) as n → ∞ componentwise. By choosing the right

subsequence convergence holds P-a.s. for all k. Writing δnk := Fk,n(I) this implies

(since we assumed P({ω}) > 0 for all ω) that

lim
n→∞

δnk (ω) = δk(ω) for all ω ∈ Ω. (3.6)

9
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Since Ω is finite, ρ can be viewed as a convex function ρ : RN → R. In

particular ρ is continuous (see Appendix 7.1). And so

lim inf
n→∞

ρ(X + (δn · S)T − CT (δn))

6 ρ(X + (δ · S)T − lim sup
n→∞

CT (δn)) continuity of ρ

6 ρ(X + (δ · S)T − CT (δ)) upper semi-continuity of ck

Combining this with (3.5) there exists n ∈ N large enough such that

ρ(X + (δn · S)T − CT (δn)) 6 π(X) + ε. (3.7)

Since δn ∈ HM for M large enough, one obtains πM (X) 6 π(X) + ε as

desired. �

3.3 Numerical Solution for the entropic risk measure

Theorems 3.1, 3.2, and Proposition 3.1 all show that it is possible to build a

near-optimal neural network for hedging, but this leaves us with the question of

actually finding such a network. To explain the main ideas, we will consider ρ to

be the entropic risk measure eγ , but the same approach works for any sufficiently

smooth risk measure.

We start by rewriting (2.7)

πM (−Z) = inf
θ∈ΘM

ρ
(
− Z + (δθ · S)T − CT (δθ)

)
= inf
θ∈ΘM

J(θ). (3.8)

We assume J to be differentiable, then to find a local minimum we may use the

gradient descent algorithm. We start with some initial (random) guess θ0 and

then iterate

θj+1 = θj − ηj∇J(θj), (3.9)

for small (ηj)j∈N. Under suitable assumptions θj converges to a local minimum

of J . This leaves us with two questions, can we find the global minimum, or at

the very least a “good” local minimum, and can we calculate ∇J efficiently?

We can answer both questions by using variants of the stochastic gradient

descent and back-propagation algorithms. For us this means that we replace the

expected value with a sum over a small subset of Ω, called a minibatch, of size

Nb � N sampled anew for every j. So we replace J in (3.9) with

Jj(θ) =
1

γ
log
( N
Nb

Nb∑
m=1

P[{ωjm}] exp
(
−γ(−Z(ωjm)+(δθ·S)T (ωjm)−CT (δθ)(ωjm))

))
,

(3.10)

10
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where (ωjk)k6Nbatch
⊂ Ω are sampled uniformly. This gives the simplest form

of the (minibatch) stochastic gradient descent algorithm. It makes computation

more efficient simply by considering a smaller sample size. Furthermore this

algorithm avoids getting stuck in local minima as each Jj will have slightly

different minima, and so θj will keep moving.

It is common to not apply log in the objective function J , as it is mono-

tonically increasing and so all the local and global minima stay the same. The

notable effect is on the magnitude of the gradient, which is scaled proportionally

to the PLT of the given minibatch, when the log is present. This empirically

yielded good results and hence we worked with the objective function as de-

scribed above. It is worth noting that minibatching will behave differently when

the log is still present, since the sum and log do no commute. This is not an

issue in this special case as we are trying to find solutions where the objective

function is close to zero, which means that the term inside the log will be close

to one, and the logarithm is approximately linear close to one, i.e. the log and

sum terms will approximately commute.

In order to actually calculate the gradient of Jj we start by naively plugging

in. We find

∇θJj(θ) =
1

γ

∑Nb

m=1 P[{ωjm}]∇θ exp
(
− γ(−Z(ωjm) + (δθ · S)T (ωjm)− CT (δθ)(ωjm))

)∑Nb

m=1 P[{ωjm}] exp
(
− γPLT (ωjm)

)
=

1

γ

∑Nb

m=1 P[{ωjm}] exp
(
− γPLT (ωjm)

)
∇θ
(
(δθ · S)T (ωjm)− CT (δθ)(ωjm)

)∑Nb

m=1 P[{ωjm}] exp
(
− γPLT (ωjm)

) .

(3.11)

We can see that this reduces to calculating the gradient of (δθ · S)T − CT (δθ),

which itself reduces to calculating the gradient of the various feed forward net-

works Fk. Here we can make use of the inherent structure of neural networks to

make this calculation feasible.

Denote by zl = Alal−1 + bl the weighted input of each layer and by al the

output of the lth layer. Without loss of generality we can assume that the bias

terms are zero, since we can append their weights to the matrix and simply

append 1 to the input vector. By repeatedly making use of the chain rule we get

the following analytic solution:

dFk
dx

(x) =
dzL

daL−1
(aL−1)

daL−1

dzL−1
(zL−1) · · · da

1

dz1
(z1)

dz1

dx
(x)

= AL · σ′(zL−1) ·AL−1 · · ·σ′(z1) ·A1

(3.12)

11
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Backpropagation then consists of evaluating this expression from right to left.

To do so we introduce the quantity

δl := σ′ · (Al+1)T · · · (AL−1)T · σ′(AL)T

= σ′ · (Al+1)T · δl+1
(3.13)

which can be calculated recursively and efficiently.

For the Markovian and recursive networks (defined in Section 4.1), the out-

put of one time-step becomes the following network’s inputs. Hence we have to

consider the backpropagation process not just for a single neural network but

through multiple networks. This causes no problems and can be done in the

same way as described above by seeing the concatenated networks as a single

large network which has additional external outputs (i.e. the stock price) every

few layers.

Remark 3.4. The specific implementation of stochastic gradient descent we use

in all experiments is Adam with the standard parameters, as suggested in the

paper, which was introduced in [10].

3.4 The Classical Delta Hedge

Before we consider the hedging results found by the neural network it is worth

considering the classical theory. The standard Black-Scholes model is given by

the stochastic differential equation

dSt = µStdt+ σStdWt, (3.14)

where Wt is a standard Brownian motion, µ is the annualized drift and σ is

the annualized volatility. For some given initial value S0 ∈ R≥0 we can find the

analytic solution

St = S0 exp
(
(µ− σ2

2
)t+ σWt

)
using basic Itô calculus. Without loss of generality we can set µ = 0 so that St

is a martingale, since we can use the Girsanov theorem (see Appendix 7.3) to

find a martingale measure (also called risk-neutral measure) from the physical

measure.

Now let us derive the risk-neutral price and hedge for the binary option. We

want to find the value of E[f(ST )] where f is defined by (2.1), although the same

derivation works for all well behaved f . We now define

Vs := E
[
f(ST ) | Fs

]
= E

[
f
(
St exp

(
σ(WT −Wt)−

σ2

2
(T − t)

))
| Ft

]
(3.15)

12
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as the value of the option at previous times. Note Vs is a martingale by con-

struction. Furthermore, St is Ft-measurable and WT −Wt ⊥ Ft. We now write

Vs = v(s, Ss) (3.16)

for some deterministic function v, which we can do since St is a Markov process.

We have the following conditions:

v(t, 0) = 0 v(T, x) = f(x) = 1x≥K (3.17)

Now by Itô’s formula we find for v(t, St) = Vt:

dVt =
dv

dt
(t, St)dt+

dv

dx
(t, St)dSt +

1

2

d2v

dx2
(t, St)d[S]t

=
dv

dt
(t, St)dt+

dv

dx
(t, St)dSt +

1

2

d2v

dx2
(t, St)σ

2S2
t dt

=
dv

dx
(t, St)dSt +

(dv
dt

(t, St) +
1

2

d2v

dx2
(t, St)σ

2S2
t

)
dt

=
dv

dx
(t, St)dSt.

(3.18)

Since Vt is a martingale we know that the drift term must be equal to zero. In

the last line we instantly see that the hedging strategy is exactly the derivative

of the value function with respect to the underlying stock price, also called the

Delta.

To now find v we must solve the following PDE with the boundary conditions

given by (3.17).

∂tv(t, x) +
1

2
∂2xv(t, x)σ2x2 = 0. (3.19)

Now let Φ be the cumulative distribution function for the standard normal

distribution. Then

v(t, x) = Φ
( log( xK )− σ2

2 (T − t)
σ
√
T − t

)
=: Φ(d−) (3.20)

is the solution to (3.19) and so the expected value of the binary option at a

given time and stock price. The hedging strategy is then given by the derivative

of (3.20) with respect to x. A simple calculation then shows

∂xv(t, x) =
1

xσ
√
T − t

φ(d−), (3.21)

where φ = Φ‘ is the probability density function of the standard normal distri-

bution.

13
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For the call option the derivation is identical, except for the boundary con-

ditions of the PDE. The solution is then given by

v(t, x) = xΦ(d+)−KΦ(d−),

d+ :=
log( xK ) + σ2

2 (T − t)
σ
√
T − t

.
(3.22)

The delta for the call option is then simply Φ(d+).

3.5 Why Binary Options?

Discontinuities in payoffs lead to sharp deltas around the strike price, especially

close to maturity; see Figure 1. This creates no problems in idealized markets

where continuous-time trading is possible, and no market frictions exist. How-

ever, in real markets, we only have finitely many trading opportunities, market

impacts, and liquidity constraints.

Fig. 1: Current Stock price versus amount of stock owned according

s to the delta hedge for various times.

All of these constraints make the rapid trading of large quantities infeasible.

Classically, to avoid these problems, binary options were estimated by a call

spread with the call strike prices just below and above the binary strike. This

will lead to a “smoother” delta, making trading more feasible, but also leads to

less efficient hedging, requiring the seller to increase the price. Furthermore, this

strategy does not address transaction costs.

Binary options create uncertainty for the seller around the terminal time,

which can be observed in Figure 2. The distribution of profits and losses versus

14
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Fig. 2: The joint distribution of the profits & losses and the stock price at terminal

time.

the terminal stock price has a significant discontinuity around the strike price,

even when hedging. Hence even a slight uncertainty of the terminal stock price

leads to a significant uncertainty of profits and losses.

4 Methodology

4.1 Network Structures

Now that we have both a theoretical framework ensuring the existence of good

solutions and a numerical tool to find these, we turn to implementation. Like

in the structure proposed in [3], we train a separate neural network for every

timestep. The neural network for a given time step takes in market informa-

tion and current holdings and returns the optimal allocation for the next time

interval. The three variants we will consider can be seen in Figure 3 below.

Fig. 3: Three different architectures

We will call a network of the first kind a simple memory-less network, one of

the second kind Markovian network, and the third kind a recursive network. The

15
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simple network has as an input, for every times step, just the market information

for that time step. The Markovian network receives, additionally, its previous

output. Finally the recursive network propagates additional information forward

in the variable h.

For every kind, the whole network consists of n − 1 fully connected neural

networks, each taking in information as described above. The two hidden layers

of these networks use tanh activation (unless otherwise stated), each of which

has 8 + d nodes. This choice is not itself significant as long as the network is

large enough to approximate the needed strategies sufficiently.

Intuitively we can think of these networks as being differentiated by how

much information can flow from one timestep to the next. For the simple network

there is no information flow between time-steps. For the Markovian network only

the current holdings are passed on. For the recursive network any information

can be passed on given that the hidden dimension is sufficiently large.

We implemented these networks in Tensorflow 2.0. The code is available on

the author’s GitHub3.

4.2 Training Details

As has already been stated, since we have transaction costs, the price can not be

a trainable variable in the network. So we have to train the network for multiple

fixed prices and then choose the price for which π(−Z + p0) is closest to zero,

due to Lemma 2.3. The exact details of this approach can be found in Appendix

7.4.

When training, the neural network calculates the profits and losses for every

simulated path and then applies the convex risk measure to the minibatch. It

then tries to minimize the result using gradient descent as described above. The

networks are trained on a deterministic learning rate schedule: every ten epochs

the learning rate decreases.

In the special case of no arbitrage and no transaction costs we can, instead

of using a risk measure, use mean squared loss and make the price a trainable

variable. This will lead the network to find the classical price derived in Section

3.4. This is because we are solving

inf
δ∈H
p∈R

E
[
(f(ST )− p− (δ • S)T )2

]
.

If these conditions are not fulfilled a different approach must be taken, since

the network can learn to trade superfluously to increase transaction costs and

3 Link: github.com/nic-kup
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simultaneously increase the price to compensate for the extra trading, leading

to arbitrary prices.

In the Subsections 5.1 the networks were trained using mean squared error.

5 Results

5.1 No Transaction Costs

First we test the network on binary and call options with no transaction costs. We

consider the Black-Scholes market model with no drift, an annualized volatility

of

σ = 0.2

and an initial price of S0 = 100. In this market we want to price at-the-money

call options, i.e. the strike price is

K = 100.

From Section 3.4 we know that an at-the-money call option would be worth

$1.868 and a binary option worth $0.490.

The options we consider mature after twenty days,

T = 20/365,

and the network has the ability to trade once a day. This means in particular

that our model consists of 20 networks one for every timestep that we trade.

If continuous time trading were possible we could replicate both the European

call option and the binary option perfectly. In the current setup of discrete

trading this is not possible, however we can still use the Delta hedge described

in Section 3.4 for every discrete time step. This still leads to a significant variance

reduction compared to not trading, but of course less significant than trading in

continuous time.

Simple Models From our derivation of the Delta hedge we would expect the

simple network to be able to find an effective strategy in a Black Scholes mar-

ket without transaction costs. First let us consider a European call option as

described in the market above, with a strike price of 100.

We can see in Figure 4 that the memory-less network learns to approximate

the classical Delta hedge very closely. The strategy most accurately approximates

the Delta hedge when the underlying is around 100, since most data points will

be close to 100 as for any given time the stock price is distributed log-normally

with mean 100. The slight deviation in strategy has no noticeable effect on the

17
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(a) An instance of hedging a call

option.

(b) A histogram of outcomes of

PLT .

(c) Delta vs Network strategy. (d) Delta vs Network strategy.

Fig. 4: Results for hedging an ATM call option with a simple network. Found

price: ∼ $1.860. For Figures c) and d) the x-axis represents current stock price

and y-axis represents the corresponding holdings for that time step. The blue

line is the classical hedge, whereas the orange is proposed by the network.

18
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outcome. The histogram of PLT for the classical Delta hedge and our simple

neural network, as overlaid in Figure 4b, are indistinguishable. Furthermore, the

price the network found was off by a third of a cent compared to the price of

implementing the Delta hedge.

The broad variance in the histogram comes from the size of the time steps.

In particular, after the last trading opportunity a whole day passes with no

readjustments possibilities.

(a) An instance of hedging a

binary option.

(b) A histogram of outcomes of PLT .

(c) Delta vs Network strategy. (d) Delta vs Network strategy.

Fig. 5: Results for hedging an ATM binary option with the simple network. Found

price: ∼ $0.488.

Next let us consider a binary option without transaction costs, again with

a strike price of 100. Here we can see in Figure 5 that the approximation of

the Delta hedge is significantly worse, especially for the early networks. Despite

the large difference in strategy, the profits and losses for the Delta strategy and

network strategy are virtually indistinguishable from each other. The price is

within one cent of E[f(ST )].

Markovian Models Now we will consider the Markovian models. Since we now

have two inputs for each network and a single output we can no longer visualize

the strategy with a curve, rather we represent it with a surface. We will train
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Niclas Küpper Results

these more general networks on the same options and with the same method as

before.

For both the binary and the call option the strategies learned are effectively

the same as in the simple case. The networks have mostly learned not to take

the previous holdings into account as we would expect. The price and PLT

histograms were effectively identical.

(a) Strategy surface for hedging a

call option.

(b) Strategy surface for hedging a

call option.

(c) Strategy surface for hedging a

binary option.

(d) Strategy surface for hedging a

binary option.

Fig. 6: Strategy surface for hedging vanilla call and binary options without trans-

action costs with a markovian network.

We have managed to recreate the results from [3] and show that the general

neural network approach can learn classical solutions to vanilla hedging prob-

lems and accurately calculate the corresponding price in complete markets. Any

deviations that do appear in the trading strategies seem to have negligible effects

on the resulting distribution of PLT .

5.2 Transaction Costs

We will now consider the same options in a market with transaction costs. No

closed form analytic solutions have been found for these types of problems.
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There have been algorithmic approaches to this problem such as using tolerance

intervals or fixed bandwidths to re-hedge finitely often, see [16].

In this section we consider the entropic risk measure with parameter γ = 1.

This risk measure avoids losses more strongly and so will cause the price to be

higher than having the risk measure ρ(•) = −E[•]. We will compare the results

to having trained with the entropic risk function without transaction costs. (Call

option price without transaction cost is ∼ $2.073 and the same for the binary

option is ∼ $0.503.) The hedging strategy the network found for no transaction

costs and entropic risk is virtually identical to the strategies found in Section

5.1.

For this Section we will consider proportional transaction costs that are given

by the following

CεT (δ) =

T∑
t=1

εSt|δt − δt−1|,

where we set ε to 0.001.

We can see in Figure 7 that the found strategy resembles the standard delta

hedge. However for Figure 7a we can see that the strategy is strongly skewed

towards the previous holdings. This effect becomes a lot weaker closer to the

terminal time, and can not be seen Figure 7b. Compared to trading without

transaction costs, the variance of PLT is also somewhat higher. Notice also in

Figure 7d that as the evaluation of the option increases the variance of PLT also

increases. Of course we can also see a negative correlation between option value

at final time and PLT .

For the binary option with one per mil transaction costs we can see that the

trading behaviour, in Figure 8a, is smoothed in the sense that it is less effected by

smaller movements, a behaviour that reduces transaction costs. We can also see

transaction cost reducing behaviour directly in the strategy surface in Figures 8c

and 8d, where holdings in the next trading period are strongly skewed towards

the previous holdings, as was the case for the call option.

The profits and losses incurred while trading are considerable more depen-

dent on the evaluation of the option. In Figure 8b we can see the probability

densities of the PLT conditional on the evaluation of the binary option. These

two distributions (conditional on Z = 0 and Z = 1) would ideally be identical,

since the seller does not want their profits and losses to be dependent on the

option. In the case of no transaction costs the hedge achieved this.

We can see that for both the binary option and the call option the Markovian

network learned to implement a skewed version of the Delta Hedge that helps
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(a) Strategy Surface at time step

5.

(b) Strategy Surface at time step

15.

(c) Histogram of PLT . (d) Histogram of PLT vs Option

value.

Fig. 7: Results for hedging an ATM European call option with a Markovian

network with 1 per mil transaction costs. Found price: ∼ $2.203.

to reduce transaction costs. Next let us compare how the other network models

compare to the Markovian network.

Comparison of Network types Now that we have studied the Markovian

network in a little more detail let us see how well it performs in comparison

to the other two proposed architectures. We will consider the effect of changing

transaction costs and the convex risk measure.

We will first consider a binary option in a Black Scholes market with trans-

action costs of ε = 0.001, as in Section 5.2. In Figure 9 we can see that the

Hidden network performs the best in the sense that the distribution of its PLT

is the sharpest. This means that the replication error is the smallest. We can see

in the example that the Markovian and hidden network behave very similarly,

whereas the simple network is more sporadic towards the end.

For higher transaction costs we can see in Figure 11b that the PLT distri-

bution is bi-modal. These two spikes are most distinct for the simple network,

since it is the least effective at hedging. We can tell from the example that the

simple strategy is also the least dynamic, it relies on a buy and hold strategy.
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(a) An instance of hedging a

binary option.

(b) A histogram of outcomes of

PLT , by option evaluation.

(c) Strategy surface for k = 5. (d) Strategy surface for k = 15.

Fig. 8: Results for hedging an ATM binary option with an an auto-regressive

network with 1 per mil transaction costs. Found price: ∼ $0.530

(a) An example of the networks

hedging.

(b) Histogram of PLT for all network

types.

Fig. 9: Hedging a binary option with 1 per mil transaction cost. The simple

(simple learner), Markovian (learner) and recursive (other learner) networks

found the same price of $0.531.

We also see that increasing the transaction costs naturally increases the price.

It is notable that despite the limited capability of the simple network it still

managed to find the same price as the other two.
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(a) An example of the networks

hedging.

(b) Histogram of PLT for all network

types.

Fig. 10: Hedging a binary option with 3 per mil transaction cost. The simple,

Markovian and recursive networks found the same price of ∼ $0.559.

(a) An example of the networks

hedging.

(b) Histogram of PLT for all network

types.

Fig. 11: Hedging a binary option with 3 per mil transaction cost. The simple,

Markovian and recursive networks found $0.629, $0.615 and $0.615 respectively.

Finally let us consider again proportional transaction costs of 3 per mil, i.e.

ε = 0.003, but we change the risk measure to the entropic risk measure with

γ = 3. Intuitively a higher gamma value implies a greater aversion of risk, i.e.

losses are punished more severely and gains are less valued. We can see that the

price increased significantly. In particular the simple network did not manage to

find the same price as the Markovian and recursive network, it has to avert risk

by raising the price as it is incapable of reducing the variance enough simply

by trading. The hidden network still performs the best. Notice that the PLT

distribution has only one peak, but is more strongly skewed to the right.

In Appendix 7.6 we consider hedging the same options as above in the same

market, but with the worst case measure.
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5.3 Convergence of price

Now we are interested in the price as ε goes to zero. The goal is to confirm

asymptotics results found by [13] and [9], and to demonstrate the effectiveness

of our methodology.

As we can see in these examples the price converges at an exponential rate

with respect to the proportional transaction cost. We will consider the Markovian

network in the following section as it tends to find the same price as the recursive

network, but trains faster. It was shown for call options, and conjectured for all

European options, in [13] and [9] respectively, that

pε − p0 = O(ε2/3), as ε↘ 0. (5.1)

Here pε is the indifference price of the option with ε as the proportional

transaction cost constant. For this example we chose eight equally distanced (in

log space) points between ε = 0.0001 and ε = 0.1. For each epsilon we use the

Markovian network to calculate the optimal price, and then plot ε versus pε−p0
in a log-log plot.

(a) Call option asymptotics. (b) Binary option asymptotics.

Fig. 12: Price asymptotics of options.

We can see in Figure 12a and 12b that the rate holds remarkably well, despite

the numerical sensitivity. Equation 5.1 was shown for continuous time trading

where the risk neutral price coincides with the indifference price. Thus we have

to compare pε to the risk neutral price.
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5.4 Heston Model and Trading Restrictions

We will start with a quick reminder of the Heston Model. It is the same as the

Black-Scholes model with the only difference being that the volatility is itself

driven by a stochastic differential equation:

dSt = µStdt+
√
VtST dW

0
t

dVt = a(b− νt)dt+ σ
√
VtdW

1
t .

(5.2)

Here W 0 and W 1 are two Brownian motions with correlation ρ ∈ (−1, 1). Usually

ρ is negative which means that uncertainty increases in periods where the stock

price decreases.

The risk neutral pricing and hedging a European option with payoff g(ST )

at T for some g : R → R in a Heston market can be derived similarly to

how we found the closed form solution for the European options in Section

3.4. However, we will not be able to solve it explicitly, i.e. there is no closed form

solution. We define Ht := E[g(ST ) | Ft]. By the Markov property we can write

Ht = u(t, St, Vt), for some

u : [0, T ]× [0,∞)2 → R.

We find that

g(ST ) = q + (δ1 · S)T + (δ2 · V )T , (5.3)

where q = E[g(ST )] and

δ1t := ∂su(t, St, Vt) and δ2t :=
∂vu(t, St, Vy)

∂vL(t, Vt)
. (5.4)

Here

L(t, v) =
v − b
a

(1− e−a(T−t)) + b(T − t).

So in continuous time trading any such option can be replicated perfectly by

trading both the stock and the volatility.

Restriction To represent the restriction in trading we replace Equation 3.4

with

πM (−Z) = inf
δ∈Hr

M

ρ(−Z + (δ · S)T − CT (δ)) (5.5)

where

HrM =
{
H ◦ δ := (Hk(δk))k6n−1 | δ ∈ HM

}
(5.6)

for some restriction functions Hk : Rd → Rd. With restriction functions we can

represent any restriction given by inequalities. As a simple example we can con-

sider limiting the number of stocks owned to some limit L in a one-dimensional
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market. Then Hk(x) = min(x, L) for all k. This can be generalized to restric-

tions being dependent on past market information, see [3], for our discussion the

above framework is sufficient.

Results In the following examples we consider simply consider the two coordi-

nate projections as possible restriction maps. Specifically this means that we will

try to hedge call and binary options by first only trading the underlying, and

then by only trading the variance via idealized variance swaps. The parameters

chosen for the Heston model are µ = 0, a = 0.8, b = 0.05, ρ = −0.65, σ = 0.2

V0 = 0.07 and S0 = 100.

Note that we can not fully represent the found strategy in a meaningful way

as we have done before since we now have three input dimensions and a single

output requiring a four dimensional plot.

Let us first consider hedging a binary option when only trading the under-

lying. The strategy is very similar to the binary hedge for the Black Scholes

model. We can see some similarities to the previously found solutions, including

the owned stock increasing for the duration the price stays close to 100.

(a) An example of the networks

hedging.

(b) Histogram of PLT .

Fig. 13: Hedging a binary option in a Heston market only trading the

underlying. Found price is $0.533

Next let us consider the same option but only trading the variance. As one

might expect one can not hedge as effectively in this scenario. This is reflected in

the higher price and more significant dissimilarity in the conditional distribution

of the PLT .

We see an interesting phenomenon when only trading the underlying for the

call option. We can see in Figure 15b that the shape of the distribution is curved
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Niclas Küpper Conclusion

(a) An example of the networks

hedging.

(b) Histogram of PLT .

Fig. 14: Hedging a binary option in a Heston market only trading the variance.

Found price is $0.563.

as opposed to straight as was the case for the Black Scholes market. This is

related to the volatility smile.

(a) An example of the networks

hedging.

(b) Histogram of PLT

Fig. 15: Hedging a call option in a Heston Market only trading the underlying.

Found price is $2.660.

6 Conclusion

The capacity of deep approaches to learn effective hedges, and thus reasonable

prices, for various options, was tested under convex risk measures. We found that

in situations where analytic solutions are known, the deep approach manages to

approximate these solutions well, and in more complicated situations, the net-

work still finds reasonable solutions. In particular, for transaction costs, we found
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that the price of hedging both European call and binary options converges to the

price without transaction costs exponentially fast at the conjectured rate. The

discontinuity of the binary options seems to have no impact on the performance

of the networks.

We saw that network architecture has a significant impact on the effective-

ness of the found strategy. The recursive network led to better results than the

Markovian, which led to better results than the simple network. This effect can

be observed for both the call and the binary option. The improvement was most

significant between the simple and Markovian networks. This was seen in the

distribution of profits and losses, the price, and also visually in the examples.

Next, we tested the convergence of the price as the proportional transaction

costs tend to zero. Our results support the conjecture that the convergence rate

is 2/3 for all European options for an unrestricted Black Scholes market. This

result also held for binary options.

Finally, we looked at incomplete markets and restricted trading in a Heston

market. We found for restricting to the underlying the network found a solution

similar to the standard Black-Scholes delta hedge, as one might expect. More

surprisingly, the network also found an effective strategy for hedging a binary

option when only trading the volatility.

A topic that could be explored in more detail include the effect on different

discretization of time. In particular letting the network search for an optimal

discretization. Further we can look at convergence properties in more detail,

both from the theoretical and numerical / experimental point of view. The factor

of 2/3 for the speed of convergence has only been proved for a narrow case of

continuous time trading. We could investigate the effects of network architecture,

discretization and market model on the rate.

More generally it is worth exploring path dependent options such as American

options in more detail. The stopping problem for such options can of course

also be solved with deep approaches, see e.g. [2]. Lastly, we can consider not

just trading stocks, but also incorporating buying vanilla options into our deep

framework, i.e. taking a deep approach to [8].
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7 Appendix

7.1 Continuity of ρ

We can view ρ : X → R as a function from RN → R instead by identifying

X ∼= RN . This can easily be done by identifying every element of Ω with a

dimension of the space RN .

Lemma 7.1. A convex risk measure ρ on a finite probability space Ω with N

elements is continuous, when seen as a function from RN → R.

Proof. Let X ∈ RN and ε > 0. Now let Y ∈ Bε/2(0). Let Ymax = maxi |Y i|.
Clearly the Ymax is bounded by ε/2. By cash-invariance and monotonicity we

find that

ρ(X)−Ymax = ρ(X+Ymax ·1) 6 ρ(X+Y ) 6 ρ(X−Ymax) = ρ(X)+Ymax. (7.1)

And so it follows that∣∣ρ(X)− ρ(X + Y )
∣∣ 6 2Ymax 6 2ε/2 = ε. (7.2)

�

7.2 Proof of Universal Approximation Theorem

The following proof is taken from [7].

Proof (of Theorems 3.1 and 3.2). We will show the universal approximation

property for neural networks with a single hidden layer. So let us define the

networks with n hidden units as

Nn
k (σ) :=

{
h : Rk → R | h(x) =

∑
j6n

βjσ(〈aj , x〉 − θj)
}
. (7.3)

We can then define all possible single hidden layer networks as

Nk(σ) :=

∞⋃
n=1

Nn
k (σ) (7.4)

As σ is bounded, Nk(σ) is a linear subspace of Lp(µ) for all finite measures µ on

Rk. If, for some µ, Nk(σ) is not dense in Lp(µ), there is, by Lemma 7.2, some

nonzero continuous linear functional Λ on Lp(µ) that vanishes on Nk(σ).

We can write this as Λ(f) =
∫
Rk fgdµ for some g ∈ Lq(µ), where q is the

conjugate of p. Define ψ(B) :=
∫
B
gdµ, then by Hölder’s inequality we find

|ψ(B)| 6 ‖1B‖p,µ‖g‖q,µ 6 µ(Rk)
1
p ‖g‖q,µ <∞, (7.5)
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and so ψ is a nonzero finite signed measure on Rk. In particular Λ(f) =
∫
Rk fgdµ =∫

Rk fdψ. Since Λ vanishes on Nk(σ), we can conclude that∫
Rk

σ(〈a, x〉 − θ)dσ(x) = 0, (7.6)

for all a ∈ Rk and θ ∈ R. Now the question becomes can there exist such a

non-zero signed measure. We call an activation function discriminatory if no

nonzero finite signed measure ψ exists such that (7.6) holds for all a and θ.

So now we want to show that if σ is bounded and nonconstant, it is discrimi-

natory. So assume ψ is a nonzero signed measure such that (7.6) holds. Fix some

u ∈ Rk and let ψu be the finite signed measure on R induced by x 7→ 〈u, x〉, that

is

ψu(B) = ψ({x ∈ Rk : 〈u, x〉 ∈ B}).

Then for all bounded function ξ on R we have

∫
Rk

ξ(〈u, x〉)dψ =

∫
R
ξ(t)dψu(t).

Hence by assumption∫
Rk

σ(λ〈u, x〉 − θ)dψ(x) =

∫
R
σ(λt− θ)dψu(t) = 0

for all λ, θ ∈ R.

To simplify notation, we will denote by L := L1(R) the Lebesgue integrable

functions and by M = M(R) the space of finite signed measures on R. For f ∈ L,

‖f‖L denotes the usual L1 norm and f̂ the Fourier transform. Similarly, for

τ ∈M , ‖τ‖M denotes the total variation of τ on R and τ̂ the Fourier transform.

Choosing θ such that σ(−θ) 6= 0 and setting λ = 0, we find that in particular∫
R dψ(t) = ψ̂u(0) = 0. For u = 0, ψu is concentrated at t = 0. But ψ0({0}) =

ψ̂0 = 0. Hence ψ0 = 0. Now suppose u 6= 0. Pick any function f ∈ L whose

Fourier transform has no zero (e.g. f(t) = exp(−t2)). Now consider∫
R

∫
R
σ(λ(s+ t)− θ)f(s) ds dψu(t). (7.7)

As ∫
R

∫
R
|σ(λ(s+ t)− θ)||f(s)| ds d|ψu|(t) 6 ‖f‖L‖ψu‖M sup

r∈R
|σ(r)| <∞,
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we can use Fubini.

0 =

∫
R

[ ∫
R
σ(λt− (θ − λs))dψu(t)

]
f(s)ds

=

∫
R

∫
R
σ(λ(s+ t)− θ)f(s) ds dψu(t)

=

∫
R
σ(λt− θ) d(f ∗ ψu)(t),

(7.8)

where f ∗ ψu denotes the convolution of f and ψu. Since f ∗ ψu is absolutely

continuous with respect to the Lebesgue measure we can denote by h ∈ L the

Radon-Nikodym derivative. Then ĥ = f̂ ψ̂u, hence ĥ(0) = 0.

This is equivalent to
∫
R σ(λt− θ)h(t)dt = 0. Let α 6= 0 and γ ∈ R. By setting

λ = 1
α and θ = − γ

α and then substituting t 7→ αt− γ, we find that for all γ and

α 6= 0 that ∫
R
σ(t)h(αt− γ)dt = 0

Let us write Mαh(t) for h(αt). The above equation implies
∫
R σ(t)g(t)dt vanishes

for all g ∈ I where I ⊂ L is the subspace spanned by the family Mαh with α 6= 0.

I is an ideal in L.

Let us denote by Z(g) the set of all ω ∈ R where the Fourier transform ĝ(ω)

for some g ∈ L vanishes. If I is an ideal of L define by Z(I), the zero set of I, as

the set of ω where the Fourier transforms of all functions in I vanish.

Suppose h is nonzero, as M̂αh(ω) = 1
α ĥ(ωα ) we find Z(I) = {0}. In face I is

precisely the set of all integrable functions g with
∫
R g(t)dt = ĝ(0) = 0. To see this

let us first note that for all function g ∈ I we trivially have {0} = Z(I) ⊂ Z(f).

Conversely, suppose that g has zero integral. As the intersection of the boundaries

of Z(I) and Z(g) equals {0} and hence contains no perfect set, implies that g ∈ I.

Hence the integral
∫
R σ(t)g(t)dt vanishes for all integrable functions which

have zero integral. It is easily seen that implies that σ is constant, which is false

by assumption. Thus h ≡ 0 and also ĥ = f̂ ψ̂u ≡ 0, which in turn implies ψ̂u ≡ 0,

since f̂ has no zeros by assumption. Hence ψu ≡ 0.

Since ψu is identically zero for all u ∈ Rk we complete the proof by explicitly

calculating the Fourier transform of ψ at u. Then

ψ̂(u) =

∫
Rk

exp(i〈u, x〉)dψ(x)

=

∫
R

exp(it)dψu(t)

= 0.

(7.9)
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And so ψ ≡ 0. Hence σ must be discriminatory.

�

The following Lemma with proof was taken from [6].

Lemma 7.2. Let Y be a linear subspace of a normed linear space X. If Y is

not dense in X, then there exists a functional f 6= 0 such that f(y) = 0 for all

y ∈ Y .

Proof. Indeed if Ȳ 6= X, then there is a point x0 satisfying

inf
y∈Y
‖y − x0‖ = d > 0. (7.10)

Now denote by Y1 the linear space spanned by Y and x0. Since x0 /∈ Y ,

every point x in Y1 has the form x = y+ λx0, where y ∈ Y and the scalar λ are

uniquely determined. Consider the linear functional g defined by g(y+λx0) = λ.

In particular g is zero on Y . If λ 6= 0, then

‖y + λx0‖ = |λ|
∥∥ y
λ

+ x0
∥∥ ≥ |λ|d. (7.11)

Hence |g(x)| 6 ‖x‖d for all x ∈ Y1. In particular ‖g‖ 6 1
d . Now let (yn)n ⊂ Y be

a sequence s.t. ‖x0 − yn‖ → d. Then

1 = g(x0 − yn) 6 ‖g‖‖x0 − yn‖ → ‖g‖d. (7.12)

And so ‖g‖ = 1
d . Then by the Hahn-Banach Theorem we can extend g to all of

X. �

7.3 Girsanov Theorem

Theorem 7.3 (Girsanov). We consider a filtered probability space (Ω,F , (Ft)t, P ).

Let N denote a continuous martingale started from N0 = 0. Now assume that

exponential martingale Et is uniformly integrable and we denote its limit by E∞.

Define a new probability measure Q on F by

Q(A) = E[1AE∞].

Then for any continuous local martingale M = (Mt)t the process

M̃t := Mt − [M,N ]t

is a local martingale under the probability measure Q.

The following proof was taken from my notes taken in [15].
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Proof. It suffices to prove the statement when M0 = 0 almost surely (else we

replace (Mt)t by (Mt −M0)t). We will work under the probability measure P .

The processes E = E(N) and M̃ are semimartingales, so we can apply Itô’s

formula to the semimartingale Ut = (EtM̃t)t.

Recall that dEt = EtdNt and d[M̃,N ]t = d[M,N ]t. Then

dUt = M̃tdEt + E(dMt − d[M,N ]t) + d[E ,M ]t

= M̃tdEt + EtdMt.
(7.13)

Hence U is a local martingale. Next we define the stopping time

Tn := inf(t > 0 | M̃t /∈ [−n, n] or Ut /∈ [−n, n]).

We see that Tn →∞ almost surely since U and M̃ are continuous. Our goal is to

show that M̃Tn is an (Ft)-martingale under Q, which implies that M̃ is a local

martingale under Q. It holds that |M̃Tn | 6 n, and so integrable with respect to

Q. This means we have to check that for all s, t > 0 and A ∈ Ft that

EQ[M̃Tn
t 1A] = EQ[M̃Tn

t+s1A].

In the case when Tn 6 t we find that M̃Tn
t = M̃Tn

t+s = M̃Tn , which implies

EQ[M̃Tn
t 1A1Tn6t] = EQ[M̃Tn

1A1Tn6t] = EQ[M̃Tn
t+s1A1Tn6t].

By definition of Tn we have that UTn is a bounded martingale for P and so

EP [M̃Tn
t E

Tn
t 1A∩{t<Tn}] = EP [M̃Tn

t+sE
Tn
t+s1A∩{t<Tn}]. (7.14)

Now consider that M̃Tn
t 1A∩{t<Tn} is a bounded Ft-measurable random variable,

which, using Et = EP [E∞|F∞], implies

EP [M̃Tn
t E

Tn
t 1A∩{t<Tn}] = EP [EtM̃t1A∩{t<Tn}]

= EP [E∞M̃t1A∩{t<Tn}] = EQ[M̃t1A∩{t<Tn}].
(7.15)

If, on the other hand, we define S = min(t+ s, Tn) we can easily check that

A ∩ {t < Tn} = A ∩ {t < S} ∈ FS , so that M̃Tn
t+s1A∩{t<Tn} is an FS-measurable

random variable. Hence

EP [ETn
t+sM̃

Tn
t+s1A∩{t<Tn}] = EP [ESM̃Tn

t+s1A∩{t<Tn}]

= EP [E∞M̃Tn
t+s1A∩{t<Tn}] = EQ[M̃Tn

t+s1A∩{t<Tn}]
(7.16)

Combining equations (7.14), (7.15) and (7.16) we find that:

EQ[M̃t1A∩{t<Tn}] = EP [M̃Tn
t E

Tn
t 1A∩{t<Tn}]

= EP [M̃Tn
t+sE

Tn
t+s1A∩{t<Tn}] = EQ[M̃Tn

t+s1A∩{t<Tn}].

�
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Now we can apply this to the Black-Scholes model. Suppose we have a stock

price St given by

dSt = St(µdt+ σdWt),

for µ ∈ R, σ ∈ R>0 and W a Wiener process. We know that we can write

St = S0 exp
(
(µ− σ2

2
)t+ σWt)

)
= E(σW• + µ•)t.

So if we can find a measure Q such that σWt + µt is a martingale on [0, T ] then

St will also be martingale on the same interval.

We can suppose that filtration Ft is generated by a Brownian motion. Then,

by a corollary of the Girsanov theorem, candidates for Q can be represented by

Zt =
dQ

dP

∣∣∣
t

= exp
( ∫ t

0

λsdWs −
1

2

∫ t

0

λ2sds
)
,

for some continuous process λ. Note that Zt is a true P -martingale on [0, T ].

Furthermore, W̃t = Wt−
∫ t
0
λsds is a Q-Brownian motion. By setting λt ∼= µ

σ we

find that

St = E(σW• + µ•)t = E(σW̃•t)

which is exactly a Q martingale.

7.4 Searching through Prices

To optimize the searching through possible prices, we implemented two ideas.

First, going through prices in a tree-like manner, and secondly retraining the

same model instead of initializing a new model for every price.

First, let us consider the tree search. To show why this works we need that

fact that

π̂p(−Z) := inf
δ∈H

E[ρ(−Z + (δ · S)T + p− CT (δ))]

is monotonically increasing as a function of the price p. This allows us to skip

over prices by only ever considering the largest price that is still negative. To

be exact, consider we want to search through prices between p0 and p0 + I0 for

p0 ∈ R and I0 ∈ R>0. Then for some n ∈ N we consider the prices {p0, p0 +
1
nI, . . . , p0+ n−1

n I}, and for each we calculate the loss. We then consider the first

price with non-negative loss and call it p1. We now set I1 = I0
n , and then repeat

this process until we have calculated the price to our desired accuracy. The code

above uses n = 4.

Second, we do not initialize a new network for every price, but simply retrain

the weights that we have learned from the previous price. This assumes that there

is a near optimal neural network F θp+ε close to F θp for a price p+ ε close to p.
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Note that this does not require the map p 7→ arg minδ E[ρ(−Z + (δ • S)T + p−
CT (δ))] to be continuous.

This approach leads to the algorithm having three distinct training loops.

The first loop trains with price p0 to then make it easier to train for each of the

prices. The second loop iterates through the prices in the way described above

and then retrains the model for each. Here we train less for each price than the

first loop because of our assumption that a good solution is near (in the space

of neural network weights). Finally, we retrain on the final price to get the right

strategy for it.

7.5 Notes on American Options

American call options are a prime example of path dependent options. They work

just as European options do, but instead the buyer has the right to exercise the

option at any time before the expiration date. So the payoff is given by

f((St)t) = max(0, Sτ −K),

where τ is some stopping time representing the buyers choice to exercise the

option.

Before we can price American options we must first be able to evaluate the

above expression. To do so we will assume that the buyer will try to exercise the

option optimally. This means we want to optimize

max
τ∈T

E
[

max(0, Sτ −K)
]
,

where T is the set of all stopping times. To do so we will use the methods from

[2]. The authors describe a method to train a deep neural network to be a near

optimal stopping time that we will call τ∗. The deep hedging framework accepts

f∗((St)t) = max(0, Sτ∗ −K) as a valid claim to hedge against.

Now let us consider the results in a Black-Scholes market with an annualized

volatility of σ = 0.2, a strike price of K = 100 and a drift of µ = −0.6. The

expiration time is T = 20/365. We also have transaction costs of ε = 0.001.

We will train the recursive network to learn the hedge. First let us look at the

stopping algorithm.

We can see that the distribution of stops has significant jumps, that are due

to the nature of the stopping time. These jumps are however not see in the

density of PLT in Figure 17a. We can tell from the examples that the network

has an understanding of when the buyer exercises the option (even though it is

not explicitly given this information) as it halts trading activity after this event.
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Fig. 16: The density of max(0, Sτ∗ −K) | max(0, Sτ∗ −K) > 0.

(a) The density of PLT . (b) An example hedge: The

dotted black line indicates where

the buyer exercised, the dotted

green line indicates the hidden

state.

Fig. 17: Hedging an American option. Found price: $2.0936.

We can even see in Figure 18 that trading continues until the expiry date, since

the option is never exercised.

7.6 Worst Case Measure

An interesting phenomena appears when training with the worst case measure.

The interpretation of training with this risk measure is avoiding a loss for the

worst case scenario. We see the effect of this in the histogram of Figure 19,

specifically none of the the examples are below zero, i.e. for every outcome the

seller of the option turns a profit. The strategy for hedging is still very familiar.

For the binary option we still see that there are no outcomes ending in loss

for the seller. However the shape of both the histogram and the strategy are

radically changed.
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Fig. 18: Another example.

(a) An instance of hedging a

binary option.

(b) A histogram of outcomes of

PLT , by option evaluation.

(c) Strategy surface for k = 5. (d) Strategy surface for k = 15.

Fig. 19: Results for hedging an ATM binary option with an an auto-regressive

network with 1 per mil transaction costs. Found price: ∼ $5.80

It is notable that in training every update step only ever saw a single training

example, i.e. the stock movement that lead to the largest loss, simply by the

nature of the choice of convex risk measure, yet the network still managed to

learn effective strategies.
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(a) An instance of hedging a

binary option.

(b) A histogram of outcomes of

PLT , by option evaluation.

(c) Strategy surface for k = 5. (d) Strategy surface for k = 15.

Fig. 20: Results for hedging an ATM binary option with an an auto-regressive

network with 1 per mil transaction costs. Found price: ∼ $0.994
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